skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Capstone Courses in Middle School
Capstone courses provide teachers the opportunity to address the 4 Cs for job skills: Collaboration, Creativity, Communications and Critical Thinking. These are the skills that industry has identified as important for employee success. Engineering schools have developed Introduction to Engineering Design courses to introduce students to these skills. This paper describes a school district that is attempting to add a capstone course at the end of their eighth grade year. The paper discusses their challenges and how they addressed the challenges.  more » « less
Award ID(s):
2031515
PAR ID:
10283027
Author(s) / Creator(s):
Date Published:
Journal Name:
ASEE annual conference
ISSN:
0190-1052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Capstone design courses, an established component of undergraduate engineering curricula, offer students the opportunity to synthesize their prior engineering coursework and apply professional and technical skills towards projects with practical application. During this unique experience, capstone faculty enable mentored exploration, coaching students to navigate the design process to complete complex and open-ended projects. However, each capstone scope of work requires project specific knowledge and skills that capstone students need to independently research and comprehend. Findings from our study of recent graduates during their first year on the job suggest that self-directed learning isn’t just occurring in the capstone experience, but it is also an essential skill in professional workplaces. In this paper we share data regarding participants’ experiences relying on self-directed learning while working on their capstone projects and later in post-graduation environments. We consider the ways that capstone design educators can design course content and mentor students to help promote this critical skill and conclude by offering recommendations. 
    more » « less
  2. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less
  3. In preparing engineering students for the workplace, capstone classes provide unique opportunities for students to develop their professional identities and learn critical skills such as engineering design, teamwork, and self-directed learning (Lutz & Paretti). But while existing research explores what and how students learn within these courses, we know much less about how capstone courses affect students’ transitions into the workplace. To address this gap, we are following 62 new graduates across 4 institutions during the participants’ first 12 weeks of work. Participants were drawn from 3 mechanical engineering programs and one general engineering program. Women were intentionally oversampled in the study, with 29 participants identifying as female. Weekly surveys were used to collect quantitative data on what types of workplace activities participants engaged in (e.g., team meetings, project budgeting, CAD modeling, engineering calculations) and qualitative data on what challenges they experience in their early work experience. In this paper, we present a descriptive analysis of the data to identify patterns across participants. Preliminary analysis of the quantitative data suggests that the most common activities for our participants were team meetings and project planning (mentioned by >70% of participants) compared to formal presentations and project budgeting (mentioned by <30% of participants). Preliminary analysis of the qualitative data suggests that participants’ most challenging experiences clustered into two dominant groups: 1) self-directed learning, and 2) teamwork and communication. The results are intended to inform both capstone faculty and industry to identify areas of strength within current practices and areas for improvement in course design and structure and/or in industry onboarding practices. 
    more » « less
  4. This study investigates engineering students’ transitions from academic to professional environments by examining the role capstone design courses play in preparing graduates for the workplace. To better understand how capstone design experiences contribute to graduates’ professional preparation, we are collecting data from participants from four different institutions with project-based capstone courses as they begin post-graduation positions in a variety of engineering workplaces. Through quantitative and qualitative methods, our study is designed to collect insights from participants in their first 12 months on the job. Currently we are collecting and analyzing data from the first of two planned cohorts of participants. Preliminary results for the participants in the first cohort point towards interesting trends regarding participants’ frequency of activities and perception of their preparedness. Professional skills such as team meetings were listed most frequently as activities engaged in by participants, and while there were particular areas such as budgeting where participants felt less prepared, overall their perception of preparedness indicates that capstone design courses and the larger engineering curriculum they are housed within are preparing students for professional careers. 
    more » « less
  5. This paper presents the initial work of a recently funded NSF project on ethical and responsible research and practices in science and engineering. The objective of this research is to improve instructor training, interventions, and student outcomes in high schools and universities to improve awareness and commitment to ethical practices in STEM coursework. The project will generate a robust snapshot of the ethical knowledge, reasoning skills, attitudes, and practices of several thousand undergraduate engineering students. This snapshot will inform the development of a three-week enrichment opportunity for high school STEM teachers. Working with university faculty and graduate students, these teachers will develop learning modules on ethical issues related to their courses. The snapshot will also identify gaps and guide the creation of targeted interventions that will be used in second-, third-, and fourth-year engineering courses. This data-driven project uses a mixed-methods approach to generate a better understanding of the impact of ethics interventions at various points in a student's academic development by developing and using a set of instruments to measure cognitive, affective, and behavioral aspects of ethical competency and self-efficacy. To that end, a second snapshot will be taken by testing and surveying engineering students in their capstone courses to provide a broad overview of the competence and self-confidence that engineering students have in dealing with ethical STEM issues, to determine the efficacy of various interventions, and to improve future interventions. Utilizing repeated measures and possessing a longitudinal dimension, the project will generate extensive data about the development of ethical competency, ethical self-efficacy, and their relationship. The interventions designed for secondary and tertiary classrooms will build on best practices for micro-insertion of ethics content that are practical and help students understand how technical competencies fit within broader social, economic, and environmental contexts. The capstone snapshot will also provide some measure of the impact of other experiences (e.g., undergraduate research, internships, service learning) and courses (e.g., humanities, social science, and business courses) on development of ethical practices. This report marks the start of a five-year project; therefore, the results presented in this paper represent findings from the engineering ethics literature and baseline results from survey of engineering freshmen at Texas A&M University. The findings from the survey are being utilized in developing intervention modules that will be integrated in upper-level engineering courses and training materials for high school teachers. 
    more » « less