Indigenous communities remain among the most underrepresented groups in computing and STEM fields, facing systemic barriers to equitable participation in computer science (CS) education. This study examines how Indigenous-serving teachers, through a sustained professional development (PD) program, design and implement culturally responsive computing (CRC) curricula in Indigenous-serving schools. Guided by the research question: How does sustained CS professional development inform the design of culturally responsive computing curricula by experienced CS teachers in Indigenous-serving schools? We employed a natural language processing (NLP) data fusion approach that integrates text mining and qualitative thematic analysis to investigate how teachers incorporate Indigenous knowledge into computing instruction. Our findings reveal three emergent themes in teacher learning and lesson design: Creating opportunities to access culture through computation, Leveraging Research and Critical Thinking Skills to Critically Engage Students with Computing, and Reflection, refinement, and professional growth through ongoing collaboration. These themes underscore the impact of CRC on bridging cultural traditions with computing, fostering engagement, and enhancing Indigenous students’ sense of belonging in CS. By supporting teachers in developing culturally relevant lessons that integrate storytelling, traditional arts, and computational thinking, this research contributes to the broader discourse on inclusive CS education. This study informs future efforts to expand Indigenous student participation in computing by highlighting the role of culturally sustaining pedagogy in professional development and curriculum design.
more »
« less
pH empowered: community participation in culturally responsive computing education
Culturally responsive computing (CRC) frames the localized knowledges and practices of Black, Brown, and Indigenous communities as assets for working toward racial justice in science, technology, engineering, and mathematics (STEM). A key part of CRC is the role that local communities play in designing and/or implementing curricula and technologies. Yet, there is a dearth of research on collaborating with local knowledge experts and what they think about CRC. In response, this paper details a two-year-long research project on the design and implementation of one CRC program called pH Empowered. pH Empowered uses computing to bridge Black hairstyling, chemistry, and entrepreneurship. Through a mixed-methods study of one pH Empowered professional development workshop, we show how cosmetologists, urban farmers, and librarians had diverse perspectives about how to be culturally responsive with STEM and the racial justice goal of broadening participation in STEM education.
more »
« less
- Award ID(s):
- 1930072
- PAR ID:
- 10284445
- Date Published:
- Journal Name:
- Learning, Media and Technology
- ISSN:
- 1743-9884
- Page Range / eLocation ID:
- 1 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Teaching in an open village: a case study on culturally responsive computing in compulsory educationnull (Ed.)ABSTRACT Background: As teachers work to broaden the participation of racially and ethnically underrepresented groups in computer science (CS), culturally responsive computing (CRC) becomes more pertinent to formal settings. Objective: Yet, equity-oriented literature offers limited guidance for developing deep forms of CRC in the classroom. In response, we support the claim that “it takes a village” to develop equity-oriented CS education but additively highlight the roles of cultural experts in the process. Methods: We use a case study methodology to explore one instance of this: a collaboration between a multi-racial team of researchers, a Black cosmetologist, and a White technology teacher. Findings: Three themes supported the CRC collaboration: multi-directional relationship building, iterative engagement with culture-computing, and collaborative implementation of a hybrid lesson. Implications: As opposed to orienting broadening participation around extractive metaphors like “pipelines,” our case study constructs the metaphor of an “open village” to orient CS education toward collaborations between schools and the communities they serve.more » « less
-
In this BoF we discuss the tenets of culturally responsive computer science and how teachers, professors and providers of professional development can include culturally responsive perspectives in their classes. In contrast to other academic fields, which typically include rigid curricular tracks ostensibly based on academic performance, talent, or ability that pose structural barriers to access to rigorous academic instruction for underrepresented students, the field of computer science education is explicitly focused on broadening participation, as evidenced by the SIGCSE community's consistent emphasis on equitable representation. Culturally responsive computing (CRC) is founded on culturally responsive teaching (CRT) and on CRT's three tenets: asset building (in contrast to deficit approaches), reflection, and connectedness. CRC frames these tenets for the specifics of computing education. CRC's tenet that all students are capable of digital innovation should drive teachers' interactions and relationships with students. CRC also requires that teachers be continually reflective about their privilege and constraints and how those are connected with our worldviews. This topic is significant because teachers must be connected to their students in non-traditional ways that prize diversity as an asset to innovation. The participants are expected to include professors, lecturers, high school teachers and industry experts who are interested in employing culturally responsive computing approaches in their own teaching and professional development activities. A major goal of the BoF is to establish connections among the participants to promote the sharing of resources and best practices.more » « less
-
Porter, Leo; Brown, Neil; Morrison, Briana; Montero, Calkin (Ed.)Indigenous communities remain significantly underrepresented in computer science (CS) and STEM fields, facing persistent barriers such as limited access to resources, infrastructure, and culturally relevant instruction. This study investigated how educators serving Indigenous populations designed and implemented culturally responsive computing (CRC)[2] curricula within a long-term professional development program grounded in a design-based research framework. The study examined how sustained, collaborative support enabled educators to effectively integrate Indigenous cultural knowledge, values, and practices into computer science education. Seven secondary teachers who work in schools in Arizona and New Mexico with over 90% Native American enrollment participated in a two-year professional development program called Let’s Talk Code Teaching Fellow. The program consisted of twelve online modules,weekly virtual meetings, in-personworkshops, and conference participation[3]. Following the DBR framework [1], teachers engaged in iterative cycles of lesson design, implementation, and revision, creating and teaching three culturally relevant computer science lessons. They received feedback from fellow teachers and research teams, allowing them to improve the connection between computing and cultural relevance in their lessons. The study employed a mixed-methods approach to data collection and analysis. Qualitative data included 14 finalized lesson plans, teacher reflections, teacher interviews, and classroom observation notes, which were thematically analyzed to identify common instructional practices and challenges, as well as strategies that connect culture and computing. Our findings showed that teachers sustained local culture by integrating Indigenous languages and art and innovative computing tools such as Scratch, micro: bit, and Sphero robots into their computing lessons. Teachers reported an increase in their confidence in computer science instruction following the long-term PD and benefited from a strong professional learning community.more » « less
-
In the United States, Black and Latinx students are underrepresented in STEM courses and careers due to a dearth of culturally relevant opportunities, which in turn are connected to broader issues of social justice. Place-based environmental civic science offers potential for addressing these issues by enabling students to apply their STEM learning to mitigate local environmental problems. By civic science we refer to science in which all citizens, not just experts, engage for the public good. In this paper, we report on a study in which we followed middle-and high-school science and math classes in urban schools serving racial/ethnic minoritized students as they engaged in an innovative contextualized curriculum—a place-based civic science model in which students work with STEM community partners to address an environmental issue in their community. We draw from students’ open-ended reflections on what they learned from participating in place-based environmental civic science projects that could help their communities. Thematic analyses of reflections collected from 291 students point to beliefs in the usefulness of science to effect community change. Students articulated the science they learned or used in the project and how it could affect their community; they made references to real world applications of science in their project work and made links between STEM and civic contributions. In their own words, the majority of students noted ways that STEM was relevant to their communities now or in the future; in addition, a subset of students expressed changes in their thinking about how they personally could apply science to positively impact their communities and the ties between STEM and social justice. Analyses also point to a sense of confidence and purpose students gained from using STEM learning for their goals of community contribution. Results of this study suggest that focusing on local place as a foundation for students’ STEM learning and linking that learning to the civic contributions they can make, cultivates students’ perceptions of how they can use science to benefit their communities. Findings also suggest that engaging students in place-based civic science work provides effective foundations for nurturing STEM interest and addressing the underrepresentation of youth of color in STEM.more » « less
An official website of the United States government

