skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy-efficient Joint Wireless Charging and Computation Offloading In MEC Systems
Wireless charging coupled with computation offloading in edge networks offers a promising solution for realizing power-hungry and computation intensive applications on user devices. We consider a mutil-access edge computing (MEC) system with collocated MEC servers and base-stations/access points (BS/AP) supporting multiple users requesting data computation and wireless charging. We propose an integrated solution for wireless charging with computation offloading to satisfy the largest feasible proportion of requested wireless charging while keeping the total energy consumption at the minimum, subject to the MEC-AP transmit power and latency constraints. We propose a novel nested algorithm to jointly perform data partitioning, time allocation, transmit power control and design the optimal energy beamforming for wireless charging. Our resource allocation scheme offers a minimal energy consumption solution compared to other schemes while also delivering a higher amount of wirelessly transferred charge to the users. Even with data offloading, our proposed solution shows significant charging performance, comparable to the case of charging alone, hence showing the effectiveness of performing partial offloading jointly with wireless charging.  more » « less
Award ID(s):
1808912
PAR ID:
10284734
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Journal of Selected Topics in Signal Processing
ISSN:
1932-4553
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Wireless charging coupled with computation offloading in edge networks offers a promising solution for realizing power-hungry and computation intensive applications on user-devices. We consider a multi-access edge computing (MEC) system with collocated MEC server and base-station/access point (AP), each equipped with a massive MIMO antenna array, supporting multiple users requesting data computation and wireless charging. The goal is to minimize the energy consumption for computation offloading and maximize the received energy at the user from wireless charging. The proposed solution is a novel two-stage algorithm employing nested descent algorithm, primal-dual subgradient and linear programming techniques to perform data partitioning and time allocation for computation offloading and design the optimal energy beamforming for wireless charging, all within MEC-AP transmit power and latency constraints. Algorithm results show that optimal energy beamforming significantly outperforms other schemes such as isotropic or directed charging without beam power allocation. Compared to binary offloading, data partition in partial offloading leads to lower energy consumption and more charging time, leading to better wireless charging performance. The charged energy over an extended period of multiple time-slots both with and without computation offloading can be substantial. Wireless charging from MEC-AP thus offers a viable untethered approach for supplying energy to user-devices. 
    more » « less
  2. Wireless data traffic, especially video traffic, continues to increase at a rapid rate. Innovative network architectures and protocols are needed to improve the efficiency of data delivery and the quality of experience (QoE) of mobile users. Mobile edge computing (MEC) is a new paradigm that integrates computing capabilities at the edge of the wireless network. This paper presents a computation-capable and programmable wireless access network architecture to enable more efficient and robust video content delivery based on the MEC concept. It incorporates in-network data processing and communications under a unified software-defined networking platform. To address the multiple resource management challenges that arise in exploiting such integration, we propose a framework to optimize the QoE for multiple video streams, subject to wireless transmission capacity and in-network computation constraints. We then propose two simplified algorithms for resource allocation. The evaluation results demonstrate the benefits of the proposed algorithms for the optimization of video content delivery. 
    more » « less
  3. The broadcasting nature of wireless signals may result in the task offloading process of mobile edge computing (MEC) suffering serious information leakage. As a novel technology, physical layer security (PLS) combined with reconfigurable intelligent surfaces (RIS) can enhance transmission quality and security. This paper investigates the MEC service delay problem in RIS-aided vehicular networks under malicious eavesdropping. Due to the lack of an explicit formulation for the optimization problem, we propose a deep deterministic policy gradient (DDPG)-based communication scheme to optimize the secure MEC service. It aims to minimize the maximum MEC service time while reducing eavesdropping threats by jointly designing the RIS phase shift matrix and computing resource allocation in real-time. Simulation results demonstrate that 1) the DDPG-based scheme can help the base station make reasonable actions to realize secure MEC service in dynamic MEC vehicular networks; 2) deploying RIS can dramatically reduce eavesdropping threats and improve the overall MEC service quality. 
    more » « less
  4. With the rapid growth of wireless compute-intensive services (such as image recognition, real-time language translation, or other artificial intelligence applications), efficient wireless algorithm design should not only address when and which users should transmit at each time instance (referred to as wireless scheduling) but also determine where the computation should be executed (referred to as offloading decision) with the goal of minimizing both computing latency and energy consumption. Despite the presence of a variety of earlier works on the efficient offloading design in wireless networks, to the best of our knowledge, there does not exist a work on the realistic user- level dynamic model, where each incoming user demands a heavy computation and leaves the system once its computing request is completed. To this end, we formulate a problem of an optimal offloading design in the presence of dynamic compute-intensive applications in wireless networks. Then, we show that there exists a fundamental logarithmic energy- workload tradeoff for any feasible offloading algorithm, and develop an optimal threshold-based offloading algorithm that achieves this fundamental logarithmic bound. 
    more » « less
  5. With the rapid growth of wireless compute-intensive services (such as image recognition, real-time language translation, or other artificial intelligence applications), efficient wireless algorithm design should not only address when and which users should transmit at each time instance (referred to as wireless scheduling) but also determine where the computation should be executed (referred to as offloading decision) with the goal of minimizing both computing latency and energy consumption. Despite the presence of a variety of earlier works on the efficient offloading design in wireless networks, to the best of our knowledge, there does not exist a work on the realistic user-level dynamic model, where each incoming user demands a heavy computation and leaves the system once its computing request is completed. To this end, we formulate a problem of an optimal offloading design in the presence of dynamic compute-intensive applications in wireless networks. Then, we show that there exists a fundamental logarithmic energy-workload tradeoff for any feasible offloading algorithm, and develop an optimal threshold-based offloading algorithm that achieves this fundamental logarithmic bound. 
    more » « less