skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deformation-Aware 3D Model Embedding and Retrieval
We introduce a new problem of retrieving 3D models that are deformable to a given query shape and present a novel deep deformation-aware embedding to solve this retrieval task. 3D model retrieval is a fundamental operation for recovering a clean and complete 3D model from a noisy and partial 3D scan. However, given a finite collection of 3D shapes, even the closest model to a query may not be satisfactory. This motivates us to apply 3D model deformation techniques to adapt the retrieved model so as to better fit the query. Yet, certain restrictions are enforced in most 3D deformation techniques to preserve important features of the original model that prevent a perfect fitting of the deformed model to the query. This gap between the deformed model and the query induces asymmetric relationships among the models, which cannot be handled by typical metric learning techniques. Thus, to retrieve the best models for fitting, we propose a novel deep embedding approach that learns the asymmetric relationships by leveraging location-dependent egocentric distance fields. We also propose two strategies for training the embedding network. We demonstrate that both of these approaches outperform other baselines in our experiments with both synthetic and real data. Our project page can be found at deformscan2cad.github.io.  more » « less
Award ID(s):
1763268
PAR ID:
10285237
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
European Conference on Computer Vision
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part-structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines. 
    more » « less
  2. Table retrieval is the task of extracting the most relevant tables to answer a user's query. Table retrieval is an important task because many domains have tables that contain useful information in a structured form. Given a user's query, the goal is to obtain a relevance ranking for query-table pairs, such that higher ranked tables should be more relevant to the query. In this paper, we present a context-aware table retrieval method that is based on a novel embedding for attribute tokens. We find that differentiated types of contexts are useful in building word embeddings. We also find that including a specialized representation of numerical cell values in our model improves table retrieval performance. We use the trained model to predict different contexts of every table. We show that the predicted contexts are useful in ranking tables against a query using a multi-field ranking approach. We evaluate our approach using public WikiTables data, and we demonstrate improvements in terms of NDCG over unsupervised baseline methods in the table retrieval task. 
    more » « less
  3. A number of recent studies have started to investigate how speech systems can be trained on untranscribed speech by leveraging accompanying images at training time. Examples of tasks include keyword prediction and within- and acrossmode retrieval. Here we consider how such models can be used for query-by-example (QbE) search, the task of retrieving utterances relevant to a given spoken query. We are particularly interested in semantic QbE, where the task is not only to retrieve utterances containing exact instances of the query, but also utterances whose meaning is relevant to the query. We follow a segmental QbE approach where variable-duration speech segments (queries, search utterances) are mapped to fixeddimensional embedding vectors. We show that a QbE system using an embedding function trained on visually grounded speech data outperforms a purely acoustic QbE system in terms of both exact and semantic retrieval performance. 
    more » « less
  4. null (Ed.)
    Scientific literature, as one of the major knowledge resources, provides abundant textual evidence that has great potential to support high-quality scientific hypothesis validation. In this paper, we study the problem of textual evidence mining in scientific literature: given a scientific hypothesis as a query triplet, find the textual evidence sentences in scientific literature that support the input query. A critical challenge for textual evidence mining in scientific literature is to retrieve high-quality textual evidence without human supervision. Because it is non-trivial to obtain a large set of human-annotated articles con-taining evidence sentences in scientific literature. To tackle this challenge, we propose EVIDENCEMINER, a high-quality textual evidence retrieval method for scientific literature without human-annotated training examples. To achieve high-quality textual evidence retrieval, we leverage heterogeneous information from both existing knowledge bases and massive unstructured text. We propose to construct a large heterogeneous information network (HIN) to build connections between the user-input queries and the candidate evidence sentences. Based on the constructed HIN, we propose a novel HIN embedding method that directly embeds the nodes onto a spherical space to improve the retrieval performance. Quantitative experiments on a huge biomedical literature corpus (over 4 million sentences) demonstrate that EVIDENCEMINER significantly outperforms baseline methods for unsupervised textual evidence retrieval. Case studies also demonstrate that our HIN construction and embedding greatly benefit many downstream applications such as textual evidence interpretation and synonym meta-pattern discovery. 
    more » « less
  5. With benefits of fast query speed and low storage cost, hashing-based image retrieval approaches have garnered considerable attention from the research community. In this paper, we propose a novel Error-Corrected Deep Cross Modal Hashing (CMH-ECC) method which uses a bitmap specifying the presence of certain facial attributes as an input query to retrieve relevant face images from the database. In this architecture, we generate compact hash codes using an end-to-end deep learning module, which effectively captures the inherent relationships between the face and attribute modality. We also integrate our deep learning module with forward error correction codes to further reduce the distance between different modalities of the same subject. Specifically, the properties of deep hashing and forward error correction codes are exploited to design a cross modal hashing framework with high retrieval performance. Experimental results using two standard datasets with facial attributes-image modalities indicate that our CMH-ECC face image retrieval model outperforms most of the current attribute-based face image retrieval approaches. 
    more » « less