skip to main content

Title: Deformation-Aware 3D Model Embedding and Retrieval
We introduce a new problem of retrieving 3D models that are deformable to a given query shape and present a novel deep deformation-aware embedding to solve this retrieval task. 3D model retrieval is a fundamental operation for recovering a clean and complete 3D model from a noisy and partial 3D scan. However, given a finite collection of 3D shapes, even the closest model to a query may not be satisfactory. This motivates us to apply 3D model deformation techniques to adapt the retrieved model so as to better fit the query. Yet, certain restrictions are enforced in most 3D deformation techniques to preserve important features of the original model that prevent a perfect fitting of the deformed model to the query. This gap between the deformed model and the query induces asymmetric relationships among the models, which cannot be handled by typical metric learning techniques. Thus, to retrieve the best models for fitting, we propose a novel deep embedding approach that learns the asymmetric relationships by leveraging location-dependent egocentric distance fields. We also propose two strategies for training the embedding network. We demonstrate that both of these approaches outperform other baselines in our experiments with both synthetic and real data. more » Our project page can be found at deformscan2cad.github.io. « less
Authors:
; ; ; ;
Award ID(s):
1763268
Publication Date:
NSF-PAR ID:
10285237
Journal Name:
European Conference on Computer Vision
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part-structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines.
  2. Deep learning has improved state-of-the-art results in many important fields, and has been the subject of much research in recent years, leading to the development of several systems for facilitating deep learning. Current systems, however, mainly focus on model building and training phases, while the issues of data management, model sharing, and lifecycle management are largely ignored. Deep learning modeling lifecycle generates a rich set of data artifacts, e.g., learned parameters and training logs, and it comprises of several frequently conducted tasks, e.g., to understand the model behaviors and to try out new models. Dealing with such artifacts and tasks is cumbersome and largely left to the users. This paper describes our vision and implementation of a data and lifecycle management system for deep learning. First, we generalize model exploration and model enumeration queries from commonly conducted tasks by deep learning modelers, and propose a high-level domain specific language (DSL), inspired by SQL, to raise the abstraction level and thereby accelerate the modeling process. To manage the variety of data artifacts, especially the large amount of checkpointed float parameters, we design a novel model versioning system (dlv), and a read-optimized parameter archival storage system (PAS) that minimizes storage footprint andmore »accelerates query workloads with minimal loss of accuracy. PAS archives versioned models using deltas in a multi-resolution fashion by separately storing the less significant bits, and features a novel progressive query (inference) evaluation algorithm. Third, we develop efficient algorithms for archiving versioned models using deltas under co-retrieval constraints. We conduct extensive experiments over several real datasets from computer vision domain to show the efficiency of the proposed techniques.« less
  3. Accurate selectivity estimation for string predicates is a long-standing research challenge in databases. Supporting pattern matching on strings (such as prefix, substring, and suffix) makes this problem much more challenging, thereby necessitating a dedicated study. Traditional approaches often build pruned summary data structures such as tries followed by selectivity estimation using statistical correlations. However, this produces insufficiently accurate cardinality estimates resulting in the selection of sub-optimal plans by the query optimizer. Recently proposed deep learning based approaches leverage techniques from natural language processing such as embeddings to encode the strings and use it to train a model. While this is an improvement over traditional approaches, there is a large scope for improvement. We propose Astrid, a framework for string selectivity estimation that synthesizes ideas from traditional and deep learning based approaches. We make two complementary contributions. First, we propose an embedding algorithm that is query-type (prefix, substring, and suffix) and selectivity aware. Consider three strings 'ab', 'abc' and 'abd' whose prefix frequencies are 1000, 800 and 100 respectively. Our approach would ensure that the embedding for 'ab' is closer to 'abc' than 'abd'. Second, we describe how neural language models could be used for selectivity estimation. While they work wellmore »for prefix queries, their performance for substring queries is sub-optimal. We modify the objective function of the neural language model so that it could be used for estimating selectivities of pattern matching queries. We also propose a novel and efficient algorithm for optimizing the new objective function. We conduct extensive experiments over benchmark datasets and show that our proposed approaches achieve state-of-the-art results.« less
  4. null (Ed.)
    Scientific literature, as one of the major knowledge resources, provides abundant textual evidence that has great potential to support high-quality scientific hypothesis validation. In this paper, we study the problem of textual evidence mining in scientific literature: given a scientific hypothesis as a query triplet, find the textual evidence sentences in scientific literature that support the input query. A critical challenge for textual evidence mining in scientific literature is to retrieve high-quality textual evidence without human supervision. Because it is non-trivial to obtain a large set of human-annotated articles con-taining evidence sentences in scientific literature. To tackle this challenge, we propose EVIDENCEMINER, a high-quality textual evidence retrieval method for scientific literature without human-annotated training examples. To achieve high-quality textual evidence retrieval, we leverage heterogeneous information from both existing knowledge bases and massive unstructured text. We propose to construct a large heterogeneous information network (HIN) to build connections between the user-input queries and the candidate evidence sentences. Based on the constructed HIN, we propose a novel HIN embedding method that directly embeds the nodes onto a spherical space to improve the retrieval performance. Quantitative experiments on a huge biomedical literature corpus (over 4 million sentences) demonstrate that EVIDENCEMINER significantly outperforms baselinemore »methods for unsupervised textual evidence retrieval. Case studies also demonstrate that our HIN construction and embedding greatly benefit many downstream applications such as textual evidence interpretation and synonym meta-pattern discovery.« less
  5. The growth of the Web in recent years has resulted in the development of various online platforms that provide healthcare information services. These platforms contain an enormous amount of information, which could be beneficial for a large number of people. However, navigating through such knowledgebases to answer specific queries of healthcare consumers is a challenging task. A majority of such queries might be non-factoid in nature, and hence, traditional keyword-based retrieval models do not work well for such cases. Furthermore, in many scenarios, it might be desirable to get a short answer that sufficiently answers the query, instead of a long document with only a small amount of useful information. In this paper, we propose a neural network model for ranking documents for question answering in the healthcare domain. The proposed model uses a deep attention mechanism at word, sentence, and document levels, for efficient retrieval for both factoid and non-factoid queries, on documents of varied lengths. Specifically, the word-level cross-attention allows the model to identify words that might be most relevant for a query, and the hierarchical attention at sentence and document levels allows it to do effective retrieval on both long and short documents. We also construct amore »new large-scale healthcare question-answering dataset, which we use to evaluate our model. Experimental evaluation results against several state-of-the-art baselines show that our model outperforms the existing retrieval techniques.« less