Evolution of the E ast G reenland C urrent from F ram S trait to D enmark S trait: Synoptic measurements from summer 2012
- Award ID(s):
- 1558742
- PAR ID:
- 10285393
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 122
- Issue:
- 3
- ISSN:
- 2169-9275
- Page Range / eLocation ID:
- 1974 to 1994
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Plant functional traits are vital tools in ecological restoration and biodiversity conservation. While functional traits and functional diversity are increasingly being used to inform restoration efforts, challenges remain in the characterization of trait variation in many systems, including within‐species. Likewise, understanding axes of trait variation describing trade‐offs in plant function is important for trait‐based restoration frameworks, yet the degree of coordination between above‐ground functional traits and their below‐ ground counterparts is often unknown. Here, we investigate intraspecific trait variation among five populations ofSchizachyrium scoparium(little bluestem), a species commonly used for restoration, from different habitat types across a gradient from southern Wisconsin to Northern Illinois. We asked (1) how regional populations ofS. scopariumdiffer in their functional traits, (2) how functional trait variation inS. scopariumis structured among and within populations, and (3) how above‐ and below‐ground functional traits ofS. scopariumcoordinate and describe axes of functional trade‐offs. We found that populations differed in multivariate trait space, but evidence for differences in individual traits among populations was mixed. Trait relationships with habitat types were idiosyncratic and often misaligned with expectations of plant economic spectra. Variation within populations was as high, or higher, than between populations across traits. We found evidence for weak coordination in several trait pairs, including two above‐ and below‐ground trait combinations, while others appeared to be uncoordinated. Our findings support previous research that trait differentiation can occur at multiple scales, both between and within populations. Extensive within‐population trait variability could be leveraged in trait‐based restoration frameworks targeting intraspecific functional diversity. The lack of strong signals of coordination between above‐ and below‐ground functional traits suggest that sourcing decisions meant to match below‐ground functional traits to recipient restored communities should rely on direct measurement of root traits associated with desired functions rather than above‐ground proxies.more » « less
-
Summary It has been 60 years since the discovery of C4photosynthesis, an event that rewrote our understanding of plant adaptation, ecosystem responses to global change, and global food security. Despite six decades of research, one aspect of C4photosynthesis that remains poorly understood is how the pathway fits into the broader context of adaptive trait spectra, which form our modern view of functional trait ecology. The C4CO2‐concentrating mechanism supports a general C4plant phenotype capable of fast growth and high resource‐use efficiencies. The fast‐efficient C4phenotype has the potential to operate at high productivity rates, while allowing for less biomass allocation to root production and nutrient acquisition, thereby providing opportunities for the evolution of novel trait covariances and the exploitation of new ecological niches. We propose the placement of the C4fast‐efficient phenotype near the acquisitive pole of the world‐wide leaf economic spectrum, but with a pathway‐specific span of trait space, wherein selection shapes both acquisitive and conservative adaptive strategies. A trait‐based perspective of C4photosynthesis will open new paths to crop improvement, global biogeochemical modeling, the management of invasive species, and the restoration of disturbed ecosystems, particularly in grasslands.more » « less
-
Leaf traits are essential for understanding many physiological and ecological processes. Partial least squares regression (PLSR) models with leaf spectroscopy are widely applied for trait estimation, but their transferability across space, time, and plant functional types (PFTs) remains unclear.We compiled a novel dataset of paired leaf traits and spectra, with 47 393 records for > 700 species and eight PFTs at 101 globally distributed locations across multiple seasons. Using this dataset, we conducted an unprecedented comprehensive analysis to assess the transferability of PLSR models in estimating leaf traits.While PLSR models demonstrate commendable performance in predicting chlorophyll content, carotenoid, leaf water, and leaf mass per area prediction within their training data space, their efficacy diminishes when extrapolating to new contexts. Specifically, extrapolating to locations, seasons, and PFTs beyond the training data leads to reducedR2(0.12–0.49, 0.15–0.42, and 0.25–0.56) and increased NRMSE (3.58–18.24%, 6.27–11.55%, and 7.0–33.12%) compared with nonspatial random cross‐validation. The results underscore the importance of incorporating greater spectral diversity in model training to boost its transferability.These findings highlight potential errors in estimating leaf traits across large spatial domains, diverse PFTs, and time due to biased validation schemes, and provide guidance for future field sampling strategies and remote sensing applications.more » « less
-
Abstract Polymeric donors of gasotransmitters, gaseous signaling molecules such as hydrogen sulfide, nitric oxide, and carbon monoxide, hold potential for localized and extended delivery of these reactive gases. Examples of gasotransmitter donors based on polysaccharides are limited despite the availability and generally low toxicity of this broad class of polymers. In this work, we sought to create a polysaccharide H2S donor by covalently attachingN‐thiocarboxyanhydrides (NTAs) to amylopectin, the major component of starch. To accomplish this, we added an allyl group to an NTA, which can spontaneously hydrolyze to release carbonyl sulfide and ultimately H2S via the ubiquitous enzyme carbonic anhydrase, and then coupled it to thiol‐functionalized amylopectin of three different molecular weights (MWs) through thiol‐ene “click” photochemistry. We also varied the degree of substitution (DS) of the NTA along the amylopectin backbone. H2S release studies on the six samples, termed amyl‐NTAs, with variable MWs (three) and DS values (two), revealed that lower MW and higher DS led to faster release. Finally, dynamic light scattering experiments suggested that aggregation increased with MW, which may also have affected H2S release rates. Collectively, these studies present a new synthetic method to produce polysaccharide H2S donors for applications in the biomedical field.more » « less
An official website of the United States government

