skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: JetLag: An Interactive, Asynchronous Array Computing Environment
We describe an interactive computing environment called JetLag. JetLag implements the following features of Phylanx project: (1) Phylanx, a Python-based asynchronous array computing toolkit; (2) the APEX performance measurement library; (3) a performance visualization framework called Traveler; (4) the Tapis/Agave Science as a Service middleware; and (6) a container infrastructure that includes Docker-based Jupyter notebook for the client and a singularity image for the server. The running system starts with a user performing array computations on their workstation or laptop. If, at some point, the calculation the user is performing becomes sufficiently intensive or numerous, it can be packaged and sent to another machine where it will run (through the batch queue system if there is one), produce a result, and have that result sent back to the user’s local interface. Whether the calculation is local or remote, the user will be able to use APEX and Traveler to diagnose and fix performance related problems. The JetLag system is suitable for a variety of array computational tasks, including machine learning and exploratory data analysis.  more » « less
Award ID(s):
1656958
PAR ID:
10285525
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Practice and Experience in Advanced Research Computing (PEARC '20)
Page Range / eLocation ID:
8 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Audio deepfakes represent a rising threat to trust in our daily communications. In response to this, the research community has developed a wide array of detection techniques aimed at preventing such attacks from deceiving users. Unfortunately, the creation of these defenses has generally overlooked the most important element of the system - the user themselves. As such, it is not clear whether current mechanisms augment, hinder, or simply contradict human classification of deepfakes. In this paper, we perform the first large-scale user study on deepfake detection. We recruit over 1,200 users and present them with samples from the three most widely-cited deepfake datasets. We then quantitatively compare performance and qualitatively conduct thematic analysis to motivate and understand the reasoning behind user decisions and differences from machine classifications. Our results show that users correctly classify human audio at significantly higher rates than machine learning models, and rely on linguistic features and intuition when performing classification. However, users are also regularly misled by pre-conceptions about the capabilities of generated audio (e.g., that accents and background sounds are indicative of humans). Finally, machine learning models suffer from significantly higher false positive rates, and experience false negatives that humans correctly classify when issues of quality or robotic characteristics are reported. By analyzing user behavior across multiple deepfake datasets, our study demonstrates the need to more tightly compare user and machine learning performance, and to target the latter towards areas where humans are less likely to successfully identify threats. 
    more » « less
  2. Foundation models are rapidly improving the capability of robots in performing everyday tasks autonomously such as meal preparation, yet robots will still need to be instructed by humans due to model performance, the difficulty of capturing user preferences, and the need for user agency. Robots can be instructed using various methods-natural language conveys immediate instructions but can be abstract or ambiguous, whereas end-user programming supports longer-horizon tasks but interfaces face difficulties in capturing user intent. In this work, we propose using direct manipulation of images as an alternative paradigm to instruct robots, and introduce a specific instantiation called ImageInThat which allows users to perform direct manipulation on images in a timeline-style interface to generate robot instructions. Through a user study, we demonstrate the efficacy of ImageInThat to instruct robots in kitchen manipulation tasks, comparing it to a text-based natural language instruction method. The results show that participants were faster with ImageInThat and preferred to use it over the text-based method. Supplementary material including code can be found at: https://image-in-that.github.io/. 
    more » « less
  3. Attack detection problems in industrial control systems (ICSs) are commonly known as a network traffic monitoring scheme for detecting abnormal activities. However, a network-based intrusion detection system can be deceived by attackers that imitate the system’s normal activity. In this work, we proposed a novel solution to this problem based on measurement data in the supervisory control and data acquisition (SCADA) system. The proposed approach is called measurement intrusion detection system (MIDS), which enables the system to detect any abnormal activity in the system even if the attacker tries to conceal it in the system’s control layer. A supervised machine learning model is generated to classify normal and abnormal activities in an ICS to evaluate the MIDS performance. A hardware-in-the-loop (HIL) testbed is developed to simulate the power generation units and exploit the attack dataset. In the proposed approach, we applied several machine learning models on the dataset, which show remarkable performances in detecting the dataset’s anomalies, especially stealthy attacks. The results show that the random forest is performing better than other classifier algorithms in detecting anomalies based on measured data in the testbed. 
    more » « less
  4. Abstract Deep generative models have shown significant promise in improving performance in design space exploration. But there is limited understanding of their interpretability, a necessity when model explanations are desired and problems are ill-defined. Interpretability involves learning design features behind design performance, called designer learning. This study explores human–machine collaboration’s effects on designer learning and design performance. We conduct an experiment (N = 42) designing mechanical metamaterials using a conditional variational autoencoder. The independent variables are: (i) the level of automation of design synthesis, e.g., manual (where the user manually manipulates design variables), manual feature-based (where the user manipulates the weights of the features learned by the encoder), and semi-automated feature-based (where the agent generates a local design based on a start design and user-selected step size); and (ii) feature semanticity, e.g., meaningful versus abstract features. We assess feature-specific learning using item response theory and design performance using utopia distance and hypervolume improvement. The results suggest that design performance depends on the subjects’ feature-specific knowledge, emphasizing the precursory role of learning. The semi-automated synthesis locally improves the utopia distance. Still, it does not result in higher global hypervolume improvement compared to manual design synthesis and reduced designer learning compared to manual feature-based synthesis. The subjects learn semantic features better than abstract features only when design performance is sensitive to them. Potential cognitive constructs influencing learning in human–machine collaborative settings are discussed, such as cognitive load and recognition heuristics. 
    more » « less
  5. Abstract Benchmark datasets and benchmark problems have been a key aspect for the success of modern machine learning applications in many scientific domains. Consequently, an active discussion about benchmarks for applications of machine learning has also started in the atmospheric sciences. Such benchmarks allow for the comparison of machine learning tools and approaches in a quantitative way and enable a separation of concerns for domain and machine learning scientists. However, a clear definition of benchmark datasets for weather and climate applications is missing with the result that many domain scientists are confused. In this paper, we equip the domain of atmospheric sciences with a recipe for how to build proper benchmark datasets, a (nonexclusive) list of domain-specific challenges for machine learning is presented, and it is elaborated where and what benchmark datasets will be needed to tackle these challenges. We hope that the creation of benchmark datasets will help the machine learning efforts in atmospheric sciences to be more coherent, and, at the same time, target the efforts of machine learning scientists and experts of high-performance computing to the most imminent challenges in atmospheric sciences. We focus on benchmarks for atmospheric sciences (weather, climate, and air-quality applications). However, many aspects of this paper will also hold for other aspects of the Earth system sciences or are at least transferable. Significance Statement Machine learning is the study of computer algorithms that learn automatically from data. Atmospheric sciences have started to explore sophisticated machine learning techniques and the community is making rapid progress on the uptake of new methods for a large number of application areas. This paper provides a clear definition of so-called benchmark datasets for weather and climate applications that help to share data and machine learning solutions between research groups to reduce time spent in data processing, to generate synergies between groups, and to make tool developments more targeted and comparable. Furthermore, a list of benchmark datasets that will be needed to tackle important challenges for the use of machine learning in atmospheric sciences is provided. 
    more » « less