skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimization of Simultaneous Measurement for Variational Quantum Eigensolver Applications
Variational quantum eigensolver (VQE) is a promising algorithm suitable for near-term quantum computers. VQE aims to approximate solutions to exponentially-sized optimization problems by executing a polynomial number of quantum subproblems. However, the number of subproblems scales as N 4 for typical problems of interest-a daunting growth rate that poses a serious limitation for emerging applications such as quantum computational chemistry. We mitigate this issue by exploiting the simultaneous measurability of subproblems corresponding to commuting terms. Our technique transpiles VQE instances into a format optimized for simultaneous measurement, ultimately yielding 8-30x lower cost. Our work also encompasses a synthesis tool for compiling simultaneous measurement circuits with minimal overhead. We demonstrate experimental validation of our techniques by estimating the ground state energy of deuteron with a quantum computer. We also investigate the underlying statistics of simultaneous measurement and devise an adaptive strategy for mitigating harmful covariance terms.  more » « less
Award ID(s):
1730449
PAR ID:
10286356
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Quantum Computing and Engineering (QCE)
Page Range / eLocation ID:
379 to 390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We describe the contextual subspace variational quantum eigensolver (CS-VQE), a hybrid quantum-classical algorithm for approximating the ground state energy of a Hamiltonian. The approximation to the ground state energy is obtained as the sum of two contributions. The first contribution comes from a noncontextual approximation to the Hamiltonian, and is computed classically. The second contribution is obtained by using the variational quantum eigensolver (VQE) technique to compute a contextual correction on a quantum processor. In general the VQE computation of the contextual correction uses fewer qubits and measurements than the VQE computation of the original problem. Varying the number of qubits used for the contextual correction adjusts the quality of the approximation. We simulate CS-VQE on tapered Hamiltonians for small molecules, and find that the number of qubits required to reach chemical accuracy can be reduced by more than a factor of two. The number of terms required to compute the contextual correction can be reduced by more than a factor of ten, without the use of other measurement reduction schemes. This indicates that CS-VQE is a promising approach for eigenvalue computations on noisy intermediate-scale quantum devices. 
    more » « less
  2. Quantum simulation of strongly correlated systems is potentially the most feasible useful application of near-term quantum computers. Minimizing quantum computational resources is crucial to achieving this goal. A promising class of algorithms for this purpose consists of variational quantum eigensolvers (VQEs). Among these, problem-tailored versions such as ADAPT-VQE that build variational ansätze step by step from a predefined operator pool perform particularly well in terms of circuit depths and variational parameter counts. However, this improved performance comes at the expense of an additional measurement overhead compared to standard VQEs. Here, we show that this overhead can be reduced to an amount that grows only linearly with the number n of qubits, instead of quartically as in the original ADAPT-VQE. We do this by proving that operator pools of size 2 n 2 can represent any state in Hilbert space if chosen appropriately. We prove that this is the minimal size of such complete pools, discuss their algebraic properties, and present necessary and sufficient conditions for their completeness that allow us to find such pools efficiently. We further show that, if the simulated problem possesses symmetries, then complete pools can fail to yield convergent results, unless the pool is chosen to obey certain symmetry rules. We demonstrate the performance of such symmetry-adapted complete pools by using them in classical simulations of ADAPT-VQE for several strongly correlated molecules. Our findings are relevant for any VQE that uses an ansatz based on Pauli strings. 
    more » « less
  3. We explore a nonvariational quantum state preparation approach combined with the ADAPT operator selection strategy in the application of preparing the ground state of a desired target Hamiltonian. In this algorithm, energy gradient measurements determine both the operators and the gate parameters in the quantum circuit construction. We compare this nonvariational algorithm with ADAPT-VQE and with feedback-based quantum algorithms in terms of the rate of energy reduction, the circuit depth, and the measurement cost in molecular simulation. We find that, despite using deeper circuits, this new algorithm reaches chemical accuracy at a similar measurement cost to ADAPT-VQE. Since it does not rely on a classical optimization subroutine, it may provide robustness against circuit parameter errors due to imperfect control or gate synthesis. 
    more » « less
  4. Quantum chemistry is a promising application for noisy intermediate-scale quantum (NISQ) devices. However, quantum computers have thus far not succeeded in providing solutions to problems of real scientific significance, with algorithmic advances being necessary to fully utilise even the modest NISQ machines available today. We discuss a method of ground state energy estimation predicated on a partitioning the molecular Hamiltonian into two parts: one that is noncontextual and can be solved classically, supplemented by a contextual component that yields quantum corrections obtained via a Variational Quantum Eigensolver (VQE) routine. This approach has been termed Contextual Subspace VQE (CS-VQE), but there are obstacles to overcome before it can be deployed on NISQ devices. The problem we address here is that of the ansatz - a parametrized quantum state over which we optimize during VQE. It is not initially clear how a splitting of the Hamiltonian should be reflected in our CS-VQE ansätze. We propose a 'noncontextual projection' approach that is illuminated by a reformulation of CS-VQE in the stabilizer formalism. This defines an ansatz restriction from the full electronic structure problem to the contextual subspace and facilitates an implementation of CS-VQE that may be deployed on NISQ devices. We validate the noncontextual projection ansatz using a quantum simulator, with results obtained herein for a suite of trial molecules. 
    more » « less
  5. Abstract Hybrid quantum-classical approaches offer potential solutions to quantum chemistry problems, yet they often manifest as constrained optimization problems. Here, we explore the interconnection between constrained optimization and generalized eigenvalue problems through the Unitary Coupled Cluster (UCC) excitation generators. Inspired by the generator coordinate method, we employ these UCC excitation generators to construct non-orthogonal, overcomplete many-body bases, projecting the system Hamiltonian into an effective Hamiltonian, which bypasses issues such as barren plateaus that heuristic numerical minimizers often encountered in standard variational quantum eigensolver (VQE). Diverging from conventional quantum subspace expansion methods, we introduce an adaptive scheme that robustly constructs the many-body basis sets from a pool of the UCC excitation generators. This scheme supports the development of a hierarchical ADAPT quantum-classical strategy, enabling a balanced interplay between subspace expansion and ansatz optimization to address complex, strongly correlated quantum chemical systems cost-effectively, setting the stage for more advanced quantum simulations in chemistry. 
    more » « less