Satellite galaxies in the cluster environment are more likely to be quenched than galaxies in the general field. Recently, it has been reported that satellite galaxy quenching depends on the orientation relative to their central galaxies: satellites along the major axis of centrals are more likely to be quenched than those along the minor axis. In this paper, we report a detection of such anisotropic quenching up to z ∼ 1 based on a large optically selected cluster catalogue constructed from the Hyper Suprime-Cam Subaru Strategic Program. We calculate the quiescent satellite galaxy fraction as a function of orientation angle measured from the major axis of central galaxies and find that the quiescent fractions at 0.25 < z < 1 are reasonably fitted by sinusoidal functions with amplitudes of a few per cent. Anisotropy is clearer in inner regions (<r200m) of clusters and not significant in cluster outskirts (>r200m). We also confirm that the observed anisotropy cannot be explained by differences in local galaxy density or stellar mass distribution along the two axes. Quiescent fraction excesses between the two axes suggest that the quenching efficiency contributing to the anisotropy is almost independent of stellar mass, at least down to our stellarmore »
- Award ID(s):
- 1716131
- Publication Date:
- NSF-PAR ID:
- 10286743
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 501
- Issue:
- 4
- Page Range or eLocation-ID:
- 5859 to 5872
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract The three-dimensional intrinsic shape of a galaxy and the mass of the central supermassive black hole provide key insight into the galaxy’s growth history over cosmic time. Standard assumptions of a spherical or axisymmetric shape can be simplistic and can bias the black hole mass inferred from the motions of stars within a galaxy. Here, we present spatially resolved stellar kinematics of M87 over a two-dimensional 250″ × 300″ contiguous field covering a radial range of 50 pc–12 kpc from integral-field spectroscopic observations at the Keck II Telescope. From about 5 kpc and outward, we detect a prominent 25 km s−1rotational pattern, in which the kinematic axis (connecting the maximal receding and approaching velocities) is 40° misaligned with the photometric major axis of M87. The rotational amplitude and misalignment angle both decrease in the inner 5 kpc. Such misaligned and twisted velocity fields are a hallmark of triaxiality, indicating that M87 is not an axisymmetrically shaped galaxy. Triaxial Schwarzschild orbit modeling with more than 4000 observational constraints enabled us to determine simultaneously the shape and mass parameters. The models incorporate a radially declining profile for the stellar mass-to-light ratio suggested by stellar population studies. We find that M87 ismore »
-
ABSTRACT We examine the thermodynamic state and cooling of the low-z circumgalactic medium (CGM) in five FIRE-2 galaxy formation simulations of Milky Way-mass galaxies. We find that the CGM in these simulations is generally multiphase and dynamic, with a wide spectrum of largely non-linear density perturbations sourced by the accretion of gas from the intergalactic medium (IGM) and outflows from both the central and satellite galaxies. We investigate the origin of the multiphase structure of the CGM with a particle-tracking analysis and find that most of the low-entropy gas has cooled from the hot halo as a result of thermal instability triggered by these perturbations. The ratio of cooling to free-fall time-scales tcool/tff in the hot component of the CGM spans a wide range of ∼1−100 at a given radius but exhibits approximately constant median values of ∼5−20 at all radii 0.1Rvir < r < Rvir. These are similar to the ≈10−20 value typically adopted as the thermal instability threshold in ‘precipitation’ models of the ICM. Consequently, a one-dimensional model based on the assumption of a constant tcool/tff and hydrostatic equilibrium approximately reproduces the number density and entropy profiles of each simulation but only if it assumes the metallicity profilemore »
-
ABSTRACT Galaxy intrinsic alignments (IAs) have long been recognized as a significant contaminant to weak lensing-based cosmological inference. In this paper we seek to quantify the impact of a common modelling assumption in analytic descriptions of IAs: that of spherically symmetric dark matter haloes. Understanding such effects is important as the current generation of IA models are known to be limited, particularly on small scales, and building an accurate theoretical description will be essential for fully exploiting the information in future lensing data. Our analysis is based on a catalogue of 113 560 galaxies between z = 0.06 and 1.00 from massiveblack-ii, a hydrodynamical simulation of box length $100 \, h^{-1}$ Mpc. We find satellite anisotropy contributes at the level of $\ge 30\!-\!40{{\ \rm per\ cent}}$ to the small-scale alignment correlation functions. At separations larger than $1 \, h^{-1}$ Mpc the impact is roughly scale independent, inducing a shift in the amplitude of the IA power spectra of $\sim 20{{\ \rm per\ cent}}$. These conclusions are consistent across the redshift range and between the massiveblack-ii and the illustris simulations. The cosmological implications of these results are tested using a simulated likelihood analysis. Synthetic cosmic shear data are constructed with the expected characteristics (depth, area, andmore »
-
ABSTRACT In order to prepare for the upcoming wide-field cosmological surveys, large simulations of the Universe with realistic galaxy populations are required. In particular, the tendency of galaxies to naturally align towards overdensities, an effect called intrinsic alignments (IA), can be a major source of systematics in the weak lensing analysis. As the details of galaxy formation and evolution relevant to IA cannot be simulated in practice on such volumes, we propose as an alternative a Deep Generative Model. This model is trained on the IllustrisTNG-100 simulation and is capable of sampling the orientations of a population of galaxies so as to recover the correct alignments. In our approach, we model the cosmic web as a set of graphs, where the graphs are constructed for each halo, and galaxy orientations as a signal on those graphs. The generative model is implemented on a Generative Adversarial Network architecture and uses specifically designed Graph-Convolutional Networks sensitive to the relative 3D positions of the vertices. Given (sub)halo masses and tidal fields, the model is able to learn and predict scalar features such as galaxy and dark matter subhalo shapes; and more importantly, vector features such as the 3D orientation of the major axismore »