skip to main content


Title: Improved Discrete Random Walk Stochastic Model for Simulating Particle Dispersion and Deposition in Inhomogeneous Turbulent Flows
Abstract The performance of different versions of the discrete random walk models in turbulent flows with nonuniform normal root-mean-square (RMS) velocity fluctuations and turbulence time scales were carefully investigated. The OpenFOAM v2−f low Reynolds number turbulence model was used for evaluating the fully developed streamwise velocity and the wall-normal RMS velocity fluctuations profiles in a turbulent channel flow. The results were then used in an in-house matlab particle tracking code, including the drag and Brownian forces, and the trajectories of randomly injected point-particles with diameters ranging from 10 nm to 30 μm were evaluated under the one-way coupling assumption. The distributions and deposition velocities of fluid-tracer and finite-size particles were evaluated using the conventional-discrete random walk (DRW) model, the modified-DRW model including the velocity gradient drift correction, and the new improved-DRW model including the velocity and time gradient drift terms. It was shown that the conventional-DRW model leads to superfluous migration of fluid-point particles toward the wall and erroneous particle deposition rate. The concentration profiles of tracer particles obtained by using the modified-DRW model still are not uniform. However, it was shown that the new improved-DRW model with the velocity and time scale drift corrections leads to uniform distributions for fluid-point particles and reasonable concentration profiles for finite-size heavy particles. In addition, good agreement was found between the estimated deposition velocities of different size particles by the new improved-DRW model with the available data.  more » « less
Award ID(s):
1925596
NSF-PAR ID:
10287206
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluids Engineering
Volume:
142
Issue:
10
ISSN:
0098-2202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The lattice Boltzmann method is employed to conduct direct numerical simulations of turbulent open channel flows with the presence of finite-size spherical sediment particles. The uniform particles have a diameter of approximately 18 wall units and a density of ρp=2.65ρf, where ρp and ρf are the particle and fluid densities, respectively. Three low particle volume fractions ϕ=0.11%, 0.22%, and 0.44% are used to investigate the particle-turbulence interactions. Simulation results indicate that particles are found to result in a more isotropic distribution of fluid turbulent kinetic energy (TKE) among different velocity components, and a more homogeneous distribution of the fluid TKE in the wall-normal direction. Particles tend to accumulate in the near-wall region due to the settling effect and they preferentially reside in low-speed streaks. The vertical particle volume fraction profiles are self-similar when normalized by the total particle volume fractions. Moreover, several typical transport modes of the sediment particles, such as resuspension, saltation, and rolling, are captured by tracking the trajectories of particles. Finally, the vertical profiles of particle concentration are shown to be consistent with a kinetic model. 
    more » « less
  2. null (Ed.)
    ABSTRACT Recently, Squire & Hopkins showed that charged dust grains moving through magnetized gas under the influence of a uniform external force (such as radiation pressure or gravity) are subject to a spectrum of instabilities. Qualitatively distinct instability families are associated with different Alfvén or magnetosonic waves and drift or gyro motion. We present a suite of simulations exploring these instabilities, for grains in a homogeneous medium subject to an external acceleration. We vary parameters such as the ratio of Lorentz-to-drag forces on dust, plasma β, size scale, and acceleration. All regimes studied drive turbulent motions and dust-to-gas fluctuations in the saturated state, rapidly amplify magnetic fields into equipartition with velocity fluctuations, and produce instabilities that persist indefinitely (despite random grain motions). Different parameters produce diverse morphologies and qualitatively different features in dust, but the saturated gas state can be broadly characterized as anisotropic magnetosonic or Alfvénic turbulence. Quasi-linear theory can qualitatively predict the gas turbulent properties. Turbulence grows from small to large scales, and larger scale modes usually drive more vigorous gas turbulence, but dust velocity and density fluctuations are more complicated. In many regimes, dust forms structures (clumps, filaments, sheets) that reach extreme overdensities (up to ≫109 times mean), and exhibit substantial substructure even in nearly incompressible gas. These can be even more prominent at lower dust-to-gas ratios. In other regimes, dust self-excites scattering via magnetic fluctuations that isotropize and amplify dust velocities, producing fast, diffusive dust motions. 
    more » « less
  3. Abstract

    Aerodynamic surface stress imposed by the atmospheric surface layer (ASL) drives aeolian sediment transport processes. When the imposed stress exceeds fluid threshold, splashing sand grains release fine (aerosol) particles. This process stops when the imposed stress falls below an impact threshold. Turbulence in the ASL is composed of elongated streaks of relatively high and low streamwise momentum (high‐momentum and low‐momentum regions, HMR and LMR, respectively), and these streaks are aligned with the prevailing winds. Streamwise‐wall‐normal turbulent stress is the concurrent product of fluctuations in streamwise and vertical velocity. These production mechanisms are categorized into quadrants: sweeps, inner interactions, ejections, and outer interactions, where the first two and last two occur within HMRs and LMRs, respectively. Under typical ASL conditions, the time‐averaged shear velocity is bound between 0.3 and 0.5 m/s, demonstrating the importance of fluctuations in mobilizing sand grains via saltation: time‐averaged shear velocity exceeding threshold does not correspond with typical ASL conditions. Given the aforementioned contributions to streamwise‐wall‐normal turbulent stresses from sweeps and ejections, it is self‐evident that under typical conditions only sweeps possess the momentum required to exceed threshold. But, any dust released is trapped by downwelling from aloft; ejections rarely exceed threshold, but they contain the positive vertical velocity needed to entrain. These attributes represent an entrainment paradox. Complementary field data are used to demonstrate the existence of an entrainment paradox. Large eddy simulation has been used to capture space‐time evolution of an idealized ASL and identify mechanistic flow physics central to entrainment.

     
    more » « less
  4. Current understanding of turbulence modulation by solid particles is incomplete as making reliable predictions on the nature and level of modulation remains a challenging task. Multiple modulation mechanisms may be simultaneously induced by particles, but the lack of reliable methods to identify these mechanisms and quantify their effects hinders a complete understanding of turbulence modulation. In this work, we present a full analysis of the turbulent kinetic energy (TKE) equation for a turbulent channel flow laden with a few fixed particles near the channel walls, in order to investigate how the wall generated turbulence interacts with the particles and how, as a result, the global turbulence statistics are modified. All terms in the budget equations of total and component-wise TKEs are explicitly computed using the data from direct numerical simulations. Particles are found to modify turbulence by two competing mechanisms: the reduction of the intrinsic turbulence production associated with a reduced mean shear due to the resistance imposed by solid particles (the first mechanism), and an additional TKE production mechanism by displacing incoming fluid (the second mechanism). The distribution of TKE in the wall-normal direction is also made more homogeneous due to the significantly enhanced pressure transport of TKE. Finally, the budget analysis of component-wise TKE reveals an enhanced inter-component TKE transfer due to the presence of particles, which leads to a more isotropic distribution of TKE among three velocity components. 
    more » « less
  5. Understanding the two-way interactions between finite-size solid particles and a wall-bounded turbulent flow is crucial in a variety of natural and engineering applications. Previous experimental measurements and particle-resolved direct numerical simulations revealed some interesting phenomena related to particle distribution and turbulence modulation, but their in-depth analyses are largely missing. In this study, turbulent channel flows laden with neutrally buoyant finite-size spherical particles are simulated using the lattice Boltzmann method. Two particle sizes are considered, with diameters equal to 14.45 and 28.9 wall units. To understand the roles played by the particle rotation, two additional simulations with the same particle sizes but no particle rotation are also presented for comparison. Particles of both sizes are found to form clusters. Under the Stokes lubrication corrections, small particles are found to have a stronger preference to form clusters, and their clusters orientate more in the streamwise direction. As a result, small particles reduce the mean flow velocity less than large particles. Particles are also found to result in a more homogeneous distribution of turbulent kinetic energy (TKE) in the wall-normal direction, as well as a more isotropic distribution of TKE among different spatial directions. To understand these turbulence modulation phenomena, we analyse in detail the total and component-wise volume-averaged budget equations of TKE with the simulation data. This budget analysis reveals several mechanisms through which the particles modulate local and global TKE in the particle-laden turbulent channel flow. 
    more » « less