skip to main content

Title: Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction
Electrochemical CO 2 or CO reduction to high-value C 2+ liquid fuels is desirable, but its practical application is challenged by impurities from cogenerated liquid products and solutes in liquid electrolytes, which necessitates cost- and energy-intensive downstream separation processes. By coupling rational designs in a Cu catalyst and porous solid electrolyte (PSE) reactor, here we demonstrate a direct and continuous generation of pure acetic acid solutions via electrochemical CO reduction. With optimized edge-to-surface ratio, the Cu nanocube catalyst presents an unprecedented acetate performance in neutral pH with other liquid products greatly suppressed, delivering a maximal acetate Faradaic efficiency of 43%, partial current of 200 mA⋅cm −2 , ultrahigh relative purity of up to 98 wt%, and excellent stability of over 150 h continuous operation. Density functional theory simulations reveal the role of stepped sites along the cube edge in promoting the acetate pathway. Additionally, a PSE layer, other than a conventional liquid electrolyte, was designed to separate cathode and anode for efficient ion conductions, while not introducing any impurity ions into generated liquid fuels. Pure acetic acid solutions, with concentrations up to 2 wt% (0.33 M), can be continuously produced by employing the acetate-selective Cu catalyst in our PSE reactor.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For the conversion of CO 2 into fuels and chemical feedstocks, hybrid gas/liquid-fed electrochemical flow reactors provide advantages in selectivity and production rates over traditional liquid phase reactors. However, fundamental questions remain about how to optimize conditions to produce desired products. Using an alkaline electrolyte to suppress hydrogen formation and a gas diffusion electrode catalyst composed of copper nanoparticles on carbon nanospikes, we investigate how hydrocarbon product selectivity in the CO 2 reduction reaction in hybrid reactors depends on three experimentally controllable parameters: (1) supply of dry or humidified CO 2 gas, (2) applied potential, and (3) electrolyte temperature. Changing from dry to humidified CO 2 dramatically alters product selectivity from C 2 products ethanol and acetic acid to ethylene and C 1 products formic acid and methane. Water vapor evidently influences product selectivity of reactions that occur on the gas-facing side of the catalyst by adding a source of protons that alters reaction pathways and intermediates. 
    more » « less
  2. Nanostructured Cu catalysts have increased the selectivities and geometric activities for high value C–C coupled (C 2 ) products (ethylene, ethanol, and acetate) in the electrochemical CO (2) reduction reaction (CO (2) RR). The selectivity among the high-value C 2 products is also altered, where for instance the yield of acetate increases with alkalinity and is dependent on the catalyst morphology. The reaction mechanisms behind the selectivity towards acetate vs. other C 2 products remain controversial. In this work, we elucidate the reaction mechanism for acetate formation by using ab initio simulations, a coupled kinetic-transport model, and loading dependent experiments. We find that trends in acetate selectivity can be rationalized from variations in electrolyte pH and the local mass transport properties of the catalyst and not from changes in Cu's intrinsic activity. The selectivity mechanism originates from the transport of ketene, a stable (closed shell) intermediate, away from the catalyst surface into solution where it reacts to form acetate. While this type of mechanism has not yet been discussed in the CO (2) RR, variants of it may explain similar selectivity fluctuations observed for other stable intermediates like CO and acetaldehyde. Our proposed mechanism suggests that acetate selectivity increases with increasing pH, decreasing catalyst roughness and significantly varies with the applied potential. 
    more » « less
  3. null (Ed.)
    Biomass conversion to alcohols using supercritical methanol depolymerization and hydrodeoxygenation (SCM-DHO) with CuMgAl mixed metal oxide is a promising process for biofuel production. We demonstrate how maple wood can be converted at high weight loadings and product concentrations in a batch and a semi-continuous reactor to a mixture of C 2 –C 10 linear and cyclic alcohols. Maple wood was solubilized semi-continuously in supercritical methanol and then converted to a mixture of C 2 –C 9 alcohols and aromatics over a packed bed of CuMgAlO x catalyst. Up to 95 wt% of maple wood can be solubilized in the methanol by using four temperature holds at 190, 230, 300, and 330 °C. Lignin was solubilized at 190 and 230 °C to a mixture of monomers, dimers, and trimers while hemicellulose and cellulose solubilized at 300 and 330 °C to a mixture of oligomeric sugars and liquefaction products. The hemicellulose, cellulose, and lignin were converted to C 2 –C 10 alcohol fuel precursors over a packed bed of CuMgAlO x catalyst with 70–80% carbon yield of the entire maple wood. The methanol reforming activity of the catalyst decreased by 25% over four beds of biomass, which corresponds to 5 turnovers for the catalyst, but was regenerable after calcination and reduction. In batch reactions, maple wood was converted at 10 wt% in methanol with 93% carbon yield to liquid products. The product concentration can be increased to 20 wt% by partially replacing the methanol with liquid products. The yield of alcohols in the semi-continuous reactor was approximately 30% lower than in batch reactions likely due to degradation of lignin and cellulose during solubilization. These results show that solubilization of whole biomass can be separated from catalytic conversion of the intermediates while still achieving a high yield of products. However, close contact of the catalyst and the biomass during solubilization is critical to achieve the highest yields and concentration of products. 
    more » « less
  4. Lignin is unique among renewable biopolymers in having significant aromatic character, making it potentially attractive for a wide range of uses from coatings to carbon fibers. Recent research has shown that hot acetic acid (AcOH)–water mixtures can be used to recover “ultraclean” lignins of controlled molecular weight from Kraft lignins. A key feature of this discovery is the existence of a region of liquid–liquid equilibrium (LLE), with one phase being rich in the purified lignin and the other rich in solvent. Although visual methods can be used to determine the temperature at which solid lignin melts in the presence of AcOH–water mixtures to form LLE, the phase transition can be seen only at lower AcOH concentrations due to solvent opacity. Thus, an electrochemical impedance spectroscopy (EIS) technique was developed for measuring the phase-transition temperature of a softwood Kraft lignin in AcOH–water mixtures. In electrochemical cells, the resistance to double-layer charging ( i.e. , polarization resistance R p ) is related to the concentration and mobility of free ions in the electrolyte, both of which are affected by the phases present. When the lignin–AcOH–water mixture was heated through the phase transition, R P was found to be a strong function of temperature, with the maximum in R P corresponding to the transition temperature obtained from visual observation. As the system is heated, acetate ions associate with the solid lignin, forming a liquefied, lignin-rich phase. This association increases the overall impedance of the system, as mobile acetate ions are stripped from the solvent phase and thus are no longer available to adsorb on the polarizing electrode surfaces. The maximum in R P occurs once the new lignin-rich phase has completely formed, and no further association of the lignin polymer with AcOH is possible. Except at sub-ambient temperatures, the phase-transition temperature was a strong function of solvent composition, increasing linearly from 18 °C at 70/30 AcOH/water to 97 °C at 10/90 wt% AcOH/water. 
    more » « less
  5. Abstract

    Recent emphasis on carbon dioxide utilization has necessitated the exploration of different catalyst compositions other than copper-based systems that can significantly improve the activity and selectivity towards specific CO2 reduction products at low applied potential. In this study, a binary CoTe has been reported as an efficient electrocatalyst for CO2reduction in aqueous medium under ambient conditions at neutral pH. CoTe showed high Faradaic efficiency and selectivity of 86.83 and 75%, respectively, for acetic acid at very low potential of − 0.25 V vs RHE. More intriguingly, C1 products like formic acid was formed preferentially at slightly higher applied potential achieving high formation rate of 547.24 μmol cm−2 h−1 at − 1.1 V vs RHE. CoTe showed better CO2RR activity when compared with Co3O4, which can be attributed to the enhanced electrochemical activity of the catalytically active transition metal center as well as improved intermediate adsorption on the catalyst surface. While reduced anion electronegativity and improved lattice covalency in tellurides enhance the electrochemical activity of Co, high d-electron density improves the intermediate CO adsorption on the catalyst site leading to CO2reduction at lower applied potential and high selectivity for C2products. CoTe also shows stable CO2RR catalytic activity for 50 h and low Tafel slope (50.3 mV dec–1) indicating faster reaction kinetics and robust functionality. Selective formation of value-added C2products with low energy expense can make these catalysts potentially viable for integration with other CO2capture technologies thereby, helping to close the carbon loop.

    more » « less