skip to main content


Title: Genetic and phenotypic variation exhibit both predictable and stochastic patterns across an intertidal fish metapopulation
Interactions among selection, gene flow, and drift affect the trajectory of adaptive evolution. In natural populations, the direction and magnitude of these processes can be variable across different spatial, temporal, or ontogenetic scales. Consequently, variability in evolutionary processes affects the predictability or stochasticity of microevolutionary outcomes. We studied an intertidal fish, Bathygobius cocosensis (Bleeker, 1854), to understand how space, time, and life stage structure genetic and phenotypic variation in a species with potentially extensive dispersal and a complex life cycle (larval dispersal preceding benthic recruitment). We sampled juvenile and adult life stages, at three sites, over three years. Genome-wide SNPs uncovered a pattern of chaotic genetic patchiness, that is, weak-but-significant patchy spatial genetic structure that was variable through time and between life stages. Outlier locus analyses suggested that targets of spatially divergent selection were mostly temporally variable, though a significant number of spatial outlier loci were shared between life stages. Head shape, a putatively ecologically responsive (adaptive) phenotype in B. cocosensis also exhibited high temporal variability within sites. However, consistent spatial relationships between sites indicated that environmental similarities among sites may generate predictable phenotype distributions across space. Our study highlights the complex microevolutionary dynamics of marine systems, where consideration of multiple ecological dimensions can reveal both predictable and stochastic patterns in the distributions of genetic and phenotypic variation. Such considerations probably apply to species that possess short, complex life cycles, have large dispersal potential and fecundities, and that inhabit heterogeneous environments.  more » « less
Award ID(s):
1743711
NSF-PAR ID:
10287951
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular Ecology
ISSN:
0962-1083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Temporal variation is a powerful source of selection on life history strategies and functional traits in natural populations. Theory predicts that the rate and predictability of fluctuations should favor distinct strategies, ranging from phenotypic plasticity to bet-hedging, which are likely to have important consequences for species distribution patterns and their responses to environmental change. To date, we have few empirical studies that test those predictions in natural systems, and little is known about how genetic, environmental, and developmental factors interact to define the “fluctuation niche” of species in temporally variable environments. In this study, we evaluated the effects of hydrological variability on fitness and functional trait variation in three closely related plant species in the genus Lasthenia that occupy different microhabitats within vernal pool landscapes. Using a controlled greenhouse experiment, we manipulated the mean and variability in hydrological conditions by growing plants at different depths with respect to a shared water table and manipulating the magnitude of stochastic fluctuations in the water table over time. We found that all species had similarly high relative fitness above the water table, but differed in their sensitivities to water table fluctuations. Specifically, the two species from vernal pools basins, where soil moisture is controlled by a perched water table, were negatively affected by the stochasticity treatments. In contrast, a species from the upland habitat surrounding vernal pools, where stochastic precipitation events control soil moisture variation, was insensitive to experimental fluctuations in the water table. We found strong signatures of genetic, environmental (plastic), and developmental variation in four traits that can influence plant hydrological responses. Three of these traits varied across plant development and among experimental treatments in directions that aligned with constitutive differences among species, suggesting that multiple sources of variation align to facilitate phenotypic matching with the hydrological environment in Lasthenia. We found little evidence for predicted patterns of phenotypic plasticity and bet-hedging in species and traits from predictable and stochastic environments, respectively. We propose that selection for developmental shifts in the hydrological traits of Lasthenia species has reduced or modified selection for plasticity at any given stage of development. Collectively, these results suggest that variation in species’ sensitivities to hydrological stochasticity may explain why vernal pool Lasthenia species do not occur in upland habitat, and that all three species integrate genetic, environmental, and developmental information to manage the unique patterns of temporal hydrological variation in their respective microhabitats.

     
    more » « less
  2. Abstract Evolutionary change begins at the population scale. Therefore, understanding adaptive variation requires the identification of the factors maintaining and shaping standing genetic variation at the within‐population level. Spatial and temporal environmental heterogeneity represent ecological drivers of within‐population genetic variation, determining the evolutionary trajectory of populations along with random processes. Here, we focused on the effects of spatiotemporal heterogeneity on quantitative and molecular variation in a natural population of the annual plant Arabidopsis thaliana . We sampled 1093 individuals from a Spanish A. thaliana population across an area of 7.4 ha for 10 years (2012–2021). Based on a sample of 279 maternal lines, we estimated spatiotemporal variation in life‐history traits and fitness from a common garden experiment. We genotyped 884 individuals with nuclear microsatellites to estimate spatiotemporal variation in genetic diversity. We assessed spatial patterns by estimating spatial autocorrelation of traits and fine‐scale genetic structure. We analysed the relationships between phenotypic variation, geographical location and genetic relatedness, as well as the effects of environmental suitability and genetic rarity on phenotypic variation. The common garden experiment indicated that there was more temporal than spatial variation in life‐history traits and fitness. Despite the differences among years, genetic distance in ecologically relevant traits (e.g. flowering time) tended to be positively correlated to genetic distance among maternal lines, while isolation by distance was less important. Genetic diversity exhibited significant spatial structure at short distances, which were consistent among years. Finally, genetic rarity, and not environmental suitability, accounted for genetic variation in life‐history traits. Synthesis . Our study highlighted the importance of repeated sampling to detect the large amount of genetic diversity at the quantitative and molecular levels that a single A. thaliana population can harbour. Overall, population genetic attributes estimated from our long‐term monitoring scheme (genetic relatedness and genetic rarity), rather than biological (dispersal) or ecological (vegetation types and environmental suitability) factors, emerged as the most important drivers of within‐population structure of phenotypic variation in A. thaliana . 
    more » « less
  3. Abstract Aim

    Natural selection typically results in the homogenization of reproductive traits, reducing natural variation within populations; thus, highly polymorphic species present unresolved questions regarding the mechanisms that shape and maintain gene flow given a diversity of phenotypes. We used an integrative framework to characterize phenotypic diversity and assess how evolutionary history and population genetics affect the highly polymorphic nature of a California endemic lily.

    Location

    California, United States.

    Taxon

    Butterfly mariposa lily,Calochortus venustus(Liliaceae).

    Methods

    We summarized phenotypic diversity at both metapopulation and subpopulation scales to explore spatial phenotypic distributions. We sampled 174 individuals across the species range representing multiple samples for each population and each phenotype. We used restriction‐site‐associated DNA sequencing (RAD‐Seq) to detect population clusters, gene flow between phenotypes and between populations, infer haplotype networks, and reconstruct ancestral range evolution to infer historical migration and range expansion.

    Results

    Polymorphic floral traits within the species such as petal pigmentation and distal spots are geographically structured, and inferred evolutionary history is consistent with a ring species pattern involving a complex of populations having experienced sequential change in genetic and phenotypic variation from the founding population. Populations remain interconnected yet have differentiated from each other along a bifurcating south‐to‐north range expansion, consequently indicating parallel evolution towards the white morphotype in the northern range. Thus, our phylogeographical analyses reveal morphological convergence with population genetic cohesion irrespective of phenotypic diversity.

    Main conclusions

    Phenotypic variation in the highly polymorphicCalochortus venustusis not due to genetic differentiation between phenotypes; rather there is genetic cohesion within six geographically defined populations, some of which maintain a high level of within‐population phenotypic diversity. Our results demonstrate that analyses of polymorphic taxa greatly benefit from disentangling phenotype from genotype at various spatial scales. We discuss results in light of ring species concepts and the need to determine the adaptive significance of the patterns we report.

     
    more » « less
  4. Abstract

    Hydrogen sulfide is a toxic gas that disrupts numerous biological processes, including energy production in the mitochondria, yet fish in thePoecilia mexicanaspecies complex have independently evolved sulfide tolerance several times. Despite clear evidence for convergence at the phenotypic level in these fishes, it is unclear if the repeated evolution of hydrogen sulfide tolerance is the result of similar genomic changes. To address this gap, we used a targeted capture approach to sequence genes associated with sulfide processes and toxicity from five sulfidic and five nonsulfidic populations in the species complex. By comparing sequence variation in candidate genes to a reference set, we identified similar population structure and differentiation, suggesting that patterns of variation in most genes associated with sulfide processes and toxicity are due to demographic history and not selection. But the presence of tree discordance for a subset of genes suggests that several loci are evolving divergently between ecotypes. We identified two differentiation outlier genes that are associated with sulfide detoxification in the mitochondria that have signatures of selection in all five sulfidic populations. Further investigation into these regions identified long, shared haplotypes among sulfidic populations. Together, these results reveal that selection on standing genetic variation in putatively adaptive genes may be driving phenotypic convergence in this species complex.

     
    more » « less
  5. Abstract

    Animal signals evolve in an ecological context. Locally adapting animal sexual signals can be especially important for initiating or reinforcing reproductive isolation during the early stages of speciation. Previous studies have demonstrated that dewlap colour inAnolislizards can be highly variable between populations in relation to both biotic and abiotic adaptive drivers at relatively large geographical scales. Here, we investigated differentiation of dewlap colouration among habitat types at a small spatial scale, within multiple islands of the West Indies, to test the hypothesis that similar local adaptive processes occur over smaller spatial scales. We explored variation in dewlap colouration in the most widespread species of anole,Anolis sagrei, across three characteristic habitats spanning the Bahamas and the Cayman Islands, namely beach scrub, primary coppice forest and mangrove forest. Using reflectance spectrometry paired with supervised machine learning, we found significant differences in spectral properties of the dewlap between habitats within small islands, sometimes over very short distances. Passive divergence in dewlap phenotype associated with isolation‐by‐distance did not seem to explain our results. On the other hand, these habitat‐specific dewlap differences varied in magnitude and direction across islands, and thus, our primary test for adaptation—parallel responses across islands—was not supported. We suggest that neutral processes or selection could be involved in several ways, including sexual selection. Our results shed new light on the scale at which signal colour polymorphism can be maintained in the presence of gene flow, and the relative role of local adaptation and other processes in driving these patterns of dewlap colour variation across islands.

     
    more » « less