skip to main content


Title: Colossal flexoresistance in dielectrics
Abstract Dielectrics have long been considered as unsuitable for pure electrical switches; under weak electric fields, they show extremely low conductivity, whereas under strong fields, they suffer from irreversible damage. Here, we show that flexoelectricity enables damage-free exposure of dielectrics to strong electric fields, leading to reversible switching between electrical states—insulating and conducting. Applying strain gradients with an atomic force microscope tip polarizes an ultrathin film of an archetypal dielectric SrTiO 3 via flexoelectricity, which in turn generates non-destructive, strong electrostatic fields. When the applied strain gradient exceeds a certain value, SrTiO 3 suddenly becomes highly conductive, yielding at least around a 10 8 -fold decrease in room-temperature resistivity. We explain this phenomenon, which we call the colossal flexoresistance, based on the abrupt increase in the tunneling conductance of ultrathin SrTiO 3 under strain gradients. Our work extends the scope of electrical control in solids, and inspires further exploration of dielectric responses to strong electromechanical fields.  more » « less
Award ID(s):
1744213
NSF-PAR ID:
10288188
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At high electric fields, the electrical energy stored in a soft elastomer dielectric can be comparable to the mechanical deformation energy it produces. This has led to the development of a class of electrically controlled, large strain dielectric elastomer actuators for soft robotics and energy harvesting devices. At large electric fields, the electro-mechanically induced deformation can lead to pseudo-periodic surface morphological instabilities which then grow with increasing field into stable pre-breakdown defects prior to final, irreversible electrical breakdown. Under these extremes of combined large electrical and mechanical deformations, the morphological evolution of the prebreakdown defects has not hitherto been reported. In contrast to the filamentary breakdown of much stiffer dielectrics, fluorescence confocal microscopy reveals an array of defects that evolve through a complex, reversible series of morphologies, transitioning from axi-symmetric ‘‘pits’’ to ‘‘crack-like’’ shapes that can ‘‘twist’’ and deflect, and finally open to form an array of holes. The observations suggest that the transitions, from axi-symmetric pits to flat, slit-like defects and then to an array of holes, are geometric instabilities. The implications for using a soft elastomer layer to increase the dielectric breakdown of a stiffer dielectric are discussed. 
    more » « less
  2. Polymer dielectrics have been widely used in electrical and electronic systems for capacitive energy storage and electrical insulation. However, emerging applications such as electric vehicles and hybrid electric aircraft demand improved polymer dielectrics for operation not only under high electric fields and high temperatures, but also extreme conditions, for example, low pressures at high altitudes, with largely increased likelihood of electrical partial discharges. To meet these stringent requirements of grand electrifications for payload efficiency, polymers with enhanced discharge resistance are highly desired. Here, we present a surface-engineering approach for Kapton® coated with self-assembled two-dimensional montmorillonite nanosheets. By suppressing the magnitude of the high-field partial discharges, this nanocoating endows polymers with improved discharge resistance, with satisfactory discharge endurance life of 200 hours at a high electric field of 46 kV mm −1 while maintaining the surface morphology of the polymer. Moreover, the MMT nanocoating can also improve the thermal stability of Kapton®, with significantly suppressed temperature coefficients for both the dielectric constant and dielectric loss over a wide temperature range from 25 to 205 °C. This work provides a practical method of surface nanocoating to explore high-discharge-resistant polymers for harsh condition electrification. 
    more » « less
  3. Abstract

    Observation of a new type of nanoscale ferroelectric domains, termed as “bubble domains”—laterally confined spheroids of sub‐10 nm size with local dipoles self‐aligned in a direction opposite to the macroscopic polarization of a surrounding ferroelectric matrix—is reported. The bubble domains appear in ultrathin epitaxial PbZr0.2Ti0.8O3/SrTiO3/PbZr0.2Ti0.8O3ferroelectric sandwich structures due to the interplay between charge and lattice degrees of freedom. The existence of the bubble domains is revealed by high‐resolution piezoresponse force microscopy (PFM), and is corroborated by aberration‐corrected atomic‐resolution scanning transmission electron microscopy mapping of the polarization displacements. An incommensurate phase and symmetry breaking is found within these domains resulting in local polarization rotation and hence impart a mixed Néel–Bloch‐like character to the bubble domain walls. PFM hysteresis loops for the bubble domains reveal that they undergo an irreversible phase transition to cylindrical domains under the electric field, accompanied by a transient rise in the electromechanical response. The observations are in agreement with ab‐initio‐based calculations, which reveal a very narrow window of electrical and elastic parameters that allow the existence of bubble domains. The findings highlight the richness of polar topologies possible in ultrathin ferroelectric structures and bring forward the prospect of emergent functionalities due to topological transitions.

     
    more » « less
  4. Abstract

    Optical absorbers comprised of an ultrathin lossy dielectric film on an opaque metallic substrate are an attractive alternative to lithographically intense metamaterial and nanoplasmonic optical absorbers as they allow for large‐scale, cost‐effective fabrication. However, requiring that the dielectric is lossy and the metallic substrate is highly reflective but not a perfect electric conductor (PEC) limits the wavelength range and materials that can be used to realize strong to perfect light absorption. In this work, we theoretically and experimentally investigate light absorption using ultrathin lossless dielectric films. By choosing proper lossless ultrathin dielectrics and substrates, iridescence free, perfect light absorption is possible over the visible, near infrared (NIR), and short‐wave infrared (SWIR) wavelength ranges with designer absorption properties. The proposed class of ultrathin film absorbers relaxes many constraints on the type of materials used to realize perfect light absorption. The flexibility of our design makes it relevant for many applications specifically in structural coloring, selective thermal emission, thermo‐photovoltaics, photo‐thermoelectric generation, and gas sensing.

     
    more » « less
  5. Soft robotics represents a new set of technologies aimed at operating in natural environments and near the human body. To interact with their environment, soft robots require artificial muscles to actuate movement. These artificial muscles need to be as strong, fast, and robust as their natural counterparts. Dielectric elastomer actuators (DEAs) are promising soft transducers, but typically exhibit low output forces and low energy densities when used without rigid supports. Here, we report a soft composite DEA made of strain-stiffening elastomers and carbon nanotube electrodes, which demonstrates a peak energy density of 19.8 J/kg. The result is close to the upper limit for natural muscle (0.4–40 J/kg), making these DEAs the highest-performance electrically driven soft artificial muscles demonstrated to date. To obtain high forces and displacements, we used low-density, ultrathin carbon nanotube electrodes which can sustain applied electric fields upward of 100 V/μm without suffering from dielectric breakdown. Potential applications include prosthetics, surgical robots, and wearable devices, as well as soft robots capable of locomotion and manipulation in natural or human-centric environments.

     
    more » « less