skip to main content


Title: Solution Existence and Uniqueness for Degenerate SDEs with Application to Schrödinger-Equation Representations
Existence and uniqueness results for solutions of stochastic differential equations (SDEs) under exceptionally weak conditions are well known in the case where the diffusion coeffcient is nondegenerate. Here, existence and uniqueness of strong solutions is obtained in the case of degenerate SDEs in a class that is motivated by diffusion representations for solutions of Schrödinger initial value problems. In such examples, the dimension of the range of the diffusion coeffcient is exactly half that of the state. In addition to this degeneracy, two types of discontinuities and singularities in the drift are allowed, where these are motivated by the structure of the Coulomb potential. The first type consists of discontinuities that may occur on a possibly high-dimensional manifold. The second consists of singularities that may occur on a smoothly parameterized curve.  more » « less
Award ID(s):
1908918
NSF-PAR ID:
10288233
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Comms. communications in Information and Systems.
Volume:
14
Issue:
4
Page Range / eLocation ID:
213 - 231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existence and uniqueness results for stochastic differential equations (SDEs) under exceptionally weak conditions are well known in the case where the diffusion coefficient is nondegenerate. Here, existence and uniqueness of a strong solution is obtained in the case of degenerate SDEs in a class that is motivated by diffusion representations for solution of Schrödinger initial value problems. In such examples, the dimension of the range of the diffusion coefficient is exactly half that of the state. In addition to the degeneracy, two types of discontinuities and singularities in the drift are allowed, where these are motivated by the structure of the Coulomb potential and the resulting solutions to the dequantized Schrödinger equation. The first type consists of discontinuities that may occur on a possibly high-dimensional manifold (up to codimension one). The second consists of singularities that may occur on a lower-dimensional manifold (up to codimension two). 
    more » « less
  2. null (Ed.)
    We consider a recent plate model obtained as a scaled limit of the three-dimensional Biot system of poro-elasticity. The result is a ‘2.5’-dimensional linear system that couples traditional Euler–Bernoulli plate dynamics to a pressure equation in three dimensions, where diffusion acts only transversely. We allow the permeability function to be time dependent, making the problem non-autonomous and disqualifying much of the standard abstract theory. Weak solutions are defined in the so-called quasi-static case, and the problem is framed abstractly as an implicit, degenerate evolution problem. Utilizing the theory for weak solutions for implicit evolution equations, we obtain existence of solutions. Uniqueness is obtained under additional hypotheses on the regularity of the permeability function. We address the inertial case in an appendix, by way of semigroup theory. The work here provides a baseline theory of weak solutions for the poro-elastic plate and exposits a variety of interesting related models and associated analytical investigations. 
    more » « less
  3. Abstract

    This paper examines the existence and uniqueness of weak solutions to thed‐dimensional magnetohydrodynamic (MHD) equations with fractional dissipation and fractional magnetic diffusion . The aim is at the uniqueness of weak solutions in the weakest possible inhomogeneous Besov spaces. We establish the local existence and uniqueness in the functional setting and when , and . The case when with and has previously been studied in [7, 19]. However, their approaches can not be directly extended to the fractional case when due to the breakdown of a bilinear estimate. By decomposing the bilinear term into different frequencies, we are able to obtain a suitable upper bound on the bilinear term for , which allows us to close the estimates in the aforementioned Besov spaces.

     
    more » « less
  4. In the previous works [RSR19, SR22] we have introduced a new type of self-similarity for the Einstein vacuum equations characterized by the fact that the homothetic vector field may be spacelike on the past light cone of the singularity. In this work we give a systematic treatment of this new self-similarity. In particular, we provide geometric characterizations of spacetimes admitting the new symmetry and show the existence and uniqueness of formal expansions around the past null cone of the singularity which may be considered analogues of the well-known Fefferman–Graham expansions. In combination with results from [RSR19] our analysis will show that the twisted self-similar solutions are sufficiently general to describe all possible asymptotic behaviors for spacetimes in the small data regime which are selfsimilar and whose homothetic vector field is everywhere spacelike on an initial spacelike hypersurface. We present an application of this later fact to the understanding of the global structure of Fefferman–Graham spacetimes and the naked singularities of [RSR19, SR22]. Lastly, we observe that by an amalgamation of the techniques from [RSR18, RSR19], one may associate true solutions to the Einstein vacuum equations to each of our formal expansions in a suitable region of spacetime. 
    more » « less
  5. We study the focusing NLS equation in $R\mathbb{R}^N$ in the mass-supercritical and energy-subcritical (or intercritical ) regime, with $H^1$ data at the mass-energy threshold $\mathcal{ME}(u_0)=\mathcal{ME}(Q)$, where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the $H^1$-critical case, in dimensions $N = 3, 4, 5$, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, $Q^\pm$, besides the standing wave $e^{it}Q$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blow-up occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations. 
    more » « less