We study the band structure and scattering of in-plane coupled longitudinal and shear stress waves in linear layered media and observe that exceptional points (EP) appear for elastic (lossless) media, when parameterized with real-valued frequency and tangential wave vector component. The occurrence of these EP pairs is not limited to the original stop bands. They could also appear in all mode pass bands, leading to the formation of new stop bands. The scattered energy near these locations is studied along with the associated polarization patterns. The broken phase symmetry is observed inside the frequency bands book-ended by these EP pairs. This is especially manifested by the chirality of the trajectory of the particle velocity, which gets selected by a ‘‘direction’’ of the wave, e.g. the imaginary part of normal component of the wave vector, or the energy flux direction just outside the band. Additionally, EP pairs also appear in the spectrum of the (modified) scattering matrix when mechanical gain is theoretically included to balance the loss in a parity-time symmetric finite structure. These EP pairs lead to amplification of transmission to above 1 and single-sided reflectivity, both phenomena associated with broken phase symmetry, with intriguing potential applications. 
                        more » 
                        « less   
                    
                            
                            Compensation of differential dispersion: application to multiband stellar interferometry.
                        
                    
    
            Abstract With the aim of pushing the limiting magnitude of interferometric instruments, the need for wide-band detection channels and for a coordinated operation of different instruments has considerably grown in the field of long-baseline interferometry. For this reason, the Center for High Angular Resolution Astronomy (CHARA), an array of six telescopes, requires a new configuration of longitudinal dispersion compensators to keep the fringe contrast above 95% simultaneously in all spectral bands, while preserving the transmission above 85 %. In this paper, we propose a new method for defining the longitudinal dispersion compensators (LDC) suited for multi-band observations. A literal approximation of the contrast loss resulting from the dispersion residues enables us to define a general criterion for fringe contrast maximisation on several bands simultaneously. The optimization of this criterion leads to a simple solution with only two LDC stages per arm and existing differential delay lines, to the glass choice and a simple linear formula for thickness control of all these media. A refined criterion can also take into account glass transmission. After presenting this criterion, we give the optimal solution (medium, configuration) and its expected performance for the planned observing modes on CHARA. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10288778
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- ISSN:
- 0035-8711
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Polarization aberrations are found in most optical components due to a materials differing response to s- and p-polarizations. This differing response can manifest either as diattenuation, retardance, or both. Correction of polarization aberrations, such as these, are critical in many applications such as interferometry, polarimetry, display, and high contrast imaging, including astronomy. In this work, compensators based on liquid crystal polymer and anti-reflection thin-films are presented to correct polarization aberrations in both transmission and reflection configurations. Our method is versatile, allowing for good correction in transmission and reflection due to optical components possessing differing diattenuation and retardance dispersions. Through simulation and experimental validation we show two designs, one correcting the polarization aberrations of a dichroic spectral filter over a 170nm wavelength band, and the other correcting the polarization aberration of an aluminum-coated mirror over a 400nm wavelength band and a 55-degree cone of angles. The measured performance of the polarization aberration compensators shows good agreement with theory.more » « less
- 
            Context.V838 Mon is a stellar merger remnant that erupted in a luminous red nova event in 2002. Although it has been well studied in the optical, near-infrared, and submillimeter regimes, its structure in the mid-infrared wavelengths remains elusive. Over the past two decades, only a handful of infrared interferometric studies have been performed, suggesting the presence of an elongated structure at multiple wavelengths. However, given the limited nature of these observations, the true morphology of the source has not yet been conclusively determined. Aims.By performing image reconstruction using observations taken at the VLTI and CHARA, we aim to map out the circumstellar environment in V838 Mon. Methods.We observed V838 Mon with the MATISSE (LMNbands) and GRAVITY (Kband) instruments at the VLTI as well as the MIRCX/MYSTIC (HKbands) instruments at the CHARA array. We geometrically modelled the squared visibilities and the closure phases in each of the bands to obtain the constraints on the physical parameters. Furthermore, we constructed high-resolution images of V838 Mon in theHKbands using the MIRA and SQUEEZE algorithms to study the immediate surroundings of the star. Lastly, we also modelled the spectral features seen in theKandMbands at various temperatures. Results.The image reconstructions show a bipolar structure that surrounds the central star in the post-merger remnant. In theKband, the super-resolved images show an extended structure (uniform disk diameter ~1.94 mas) with a clumpy morphology that is aligned along a north-west position angle (PA) of −40°. On the other hand, in theHband, the extended structure (uniform disk diameter ~1.18 mas) lies roughly along the same PA. Yet the northern lobe is slightly misaligned with respect to the southern lobe, which results in the closure phase deviations. Conclusions.The VLTI and CHARA imaging results show that V838 Mon is surrounded by features resembling jets that are intrinsically asymmetric. This is further confirmed by the closure phase modelling. Further observations with VLTI can help to determine whether this structure shows any variations over time and also if such bi-polar structures are commonly formed in other stellar merger remnants.more » « less
- 
            Mérand, Antoine; Sallum, Stephanie; Sanchez-Bermudez, Joel (Ed.)The Michigan Young STar Imager at CHARA (MYSTIC) is a K-band interferometric beam combining instrument funded by the United States National Science Foundation, designed primarily for imaging sub-au scale disk structures around nearby young stars and to probe the planet formation process. Installed at the CHARA array in July 2021, with baselines up to 331 meters, MYSTIC provides a maximum angular resolution of λ/2B ∼ 0.7 mas. The instrument injects phase corrected light from the array into inexpensive, single-mode, polarization maintaining silica fibers, which are then passed via a vacuum feedthrough into a cryogenic dewar operating at 220 K for imaging. MYSTIC utilizes a high frame rate, ultra-low read noise SAPHIRA detector, and implements two beam combiners: a 6-telescope image plane beam combiner, based on the MIRC-X design, for targets as faint as 7.7 Kmag, as well as a 4-telescope integrated optic beam-combiner mode using a spare chip leftover from the GRAVITY instrument. MYSTIC is co-phased with the MIRC-X (J+H band) instrument for simultaneous fringe-tracking and imaging, and shares its software suite with the latter to allow a single observer to operate both instruments. Herein, we present the instrument design, review its operational performance, present early commissioning science observations, and propose upgrades to the instrument that could improve its K-band sensitivity to 10th magnitude in the near future.more » « less
- 
            Polarization aberrations are found in most optical components due to a materials-differing response tos- andp-polarizations. This differing response can manifest either as diattenuation, retardance, or both. Correction of polarization aberrations, such as these, are critical in many applications such as interferometry, polarimetry, display, and high contrast imaging, including astronomy. In this work, compensators based on liquid crystal polymer and anti-reflection thin-films are presented to correct polarization aberrations in both transmission and reflection configurations. Our method is versatile, allowing for good correction in transmission and reflection due to optical components possessing differing diattenuation and retardance dispersions. Through simulation and experimental validation we show two designs, one correcting the polarization aberrations of a dichroic spectral filter over a 170nm wavelength band, and the other correcting the polarization aberration of an aluminum-coated mirror over a 400nm wavelength band and a 55-degree cone of angles. The measured performance of the polarization aberration compensators shows good agreement with theory.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    