An enhanced Cu-based friction material was prepared by the powder metallurgy techniques and proposed for use in the dry clutch system. The friction characteristics and wear rate of this friction material sliding against 65Mn steel are obtained using Universal Material Tester-5. The friction pairs were subjected to two operating variables, which are sliding speed and temperature. The effect of these variables during the engagement process of the friction pairs is investigated. Knowing the normal applied force and dimension of the clutch disc, the dynamic friction coefficient was translated to friction torque capacity with time. It was found that instability can be excited at low operational conditions when the resulting friction coefficient is high. At 25 ℃, the dynamic friction torque oscillates with time likewise at 400 ℃. Generally, a more stable friction torque is obtained when the sliding speed is varied compared to varying the temperatures. Moreover, the influence of the operating temperatures and sliding speeds on thermal buckling and thermoelastic instability of the friction disc is the second consideration in this work. The onset of thermoelastic instability occurs when the sliding speed exceeded 200 r/min and the results for the growth rate of hot spots were found to agree well with the critical speed of the system. Also, thermal buckling was highly dependent on the temperature difference between the inner and outer radius of the friction disc.
more »
« less
Surface property study of additively manufactured Inconel 625 at room temperature and 510 °C
Various mechanical systems are subjected to inherent oscillatory motions often paired with extreme, high-temperature environments resulting in fretting wear. In this work, the fretting wear resistance of additively manufactured Inconel 625 was studied at room and elevated temperatures. In-situ temperature-controlled nanoindentation was employed to further elucidate mechanical property evolution as a function of temperature. The results showed a 30% decrease in near-surface mean hardness at 510 °C compared to room temperature. However, the material exhibited significantly lower wear and coefficient of friction values at high temperatures, attributed to the formation of a compacted, intermediate oxide layer preventing excessive friction and wear.
more »
« less
- Award ID(s):
- 2029059
- PAR ID:
- 10288982
- Date Published:
- Journal Name:
- Manufacturing letters
- Volume:
- 26
- ISSN:
- 2213-8463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Minimizing the wear of the surfaces exposed to mechanical shear stresses is a critical challenge for maximizing the lifespan of rotary mechanical parts. In this study, we have discovered the anti-wear capability of a series of metal nitride-copper nanocomposite coatings tested in a liquid hydrocarbon environment. The results indicate substantial reduction of the wear in comparison to the uncoated steel substrate. Analysis of the wear tracks indicates the formation of carbon-based protective films directly at the sliding interface during the tribological tests. Raman spectroscopy mapping of the wear track suggests the amorphous carbon (a-C) nature of the formed tribofilm. Further analysis of the tribocatalytic activity of the best coating candidate, MoN-Cu, as a function of load (0.25–1 N) and temperature (25 °C and 50 °C) was performed in three alkane solutions, decane, dodecane, and hexadecane. Results indicated that elevated temperature and high contact pressure lead to different tribological characteristics of the coating tested in different environments. The elemental energy dispersive x-ray spectroscopy analysis and Raman analysis revealed formation of the amorphous carbon film that facilitates easy shearing at the contact interface thus enabling more stable friction behavior and lower wear of the tribocatalytic coating. These findings provide new insights into the tribocatalysis mechanism that enables the formation of zero-wear coatings.more » « less
-
Glasses are nonequilibrium solids with properties highly dependent on their method of preparation. In vapor-deposited molecular glasses, structural organization could be readily tuned with deposition rate and substrate temperature. Here, we show that the atomic arrangement of strong network-forming GeO 2 glass is modified at medium range (<2 nm) through vapor deposition at elevated temperatures. Raman spectral signatures distinctively show that the population of six-membered GeO 4 rings increases at elevated substrate temperatures. Deposition near the glass transition temperature is more efficient than postgrowth annealing in modifying atomic structure at medium range. The enhanced medium-range organization correlates with reduction of the room temperature internal friction. Identifying the microscopic origin of room temperature internal friction in amorphous oxides is paramount to design the next-generation interference coatings for mirrors of the end test masses of gravitational wave interferometers, in which the room temperature internal friction is a main source of noise limiting their sensitivity.more » « less
-
Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable problems such as thermal-mechanical instabilities. In this work, a molecular dynamics model has been developed for investigating the effects of material composition, density, and surface asperities on the tribological properties of inorganic 3C-SiC under various contact conditions at the atomic level. Predictions on the following results have been made: (1) elastic modulus, (2) tensile strength, (3) thermal conductivity, and (4) friction coefficient. The research findings can help improve the design of metal-free friction materials against thermal-mechanical failures. Parametric studies were performed by varying a number of conditions including (1) ambient temperature, (2) sliding speed, (3) crystal orientation, (4) asperity size, (5) degree of asperity intersection, (6) types of loading, and (7) surface contact. Plastic deformation and material transfer were successfully modeled between two sliding pairs. Some of the computational results were validated against existing experimental data found in the literature. The evaluation of wear rate was also incorporated. The model can easily be extended to deal with other nonmetallic friction composites.more » « less
-
The friction and wear behavior of palladium (Pd)-rich amorphous alloy (Pd43Cu27Ni10P20) against 440C stainless steel under ionic liquids as lubricants, i.e., 1-nonyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([C9C1im][NTf2]), were investigated using a ball-on-disc reciprocating tribometer at ambient, 100 and 200 °C with different sliding speeds of 3 and 7 mm/s, whose results were compared to those from crystalline Pd samples. The measured coefficient of friction (COF) and wear were affected by both temperature and sliding speed. The COF of crystalline Pd samples dramatically increased when the temperature increased, whereas the COF of the amorphous Pd alloy samples remained low. As the sliding speed increased, the COF of both Pd samples showed decreasing trends. From the analysis of a 3D surface profilometer and scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) data, three types of wear (i.e., delamination, adhesive, and abrasive wear) were observed on the crystalline Pd surfaces, whereas the amorphous Pd alloy surfaces produced abrasive wear only. In addition, X-ray photoelectron spectroscopy (XPS) measurements were performed to study the formation of tribofilm. It was found that the chemical reactivity at the contacting interface increased with temperature and sliding contact speed. The ionic liquids (ILs) were effective as lubricants when the applied temperature and sliding speed were 200 °C and 7 mm/s, respectively.more » « less
An official website of the United States government

