skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gene tagging via CRISPR-mediated homology-directed repair in cassava
Abstract Research on a few model plant–pathogen systems has benefitted from years of tool and resource development. This is not the case for the vast majority of economically and nutritionally important plants, creating a crop improvement bottleneck. Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis (Xam), is an important disease in all regions where cassava (Manihot esculenta Crantz) is grown. Here, we describe the development of cassava that can be used to visualize one of the initial steps of CBB infection in vivo. Using CRISPR-mediated homology-directed repair (HDR), we generated plants containing scarless insertion of GFP at the 3’ end of CBB susceptibility (S) gene MeSWEET10a. Activation of MeSWEET10a-GFP by the transcription activator-like (TAL) effector TAL20 was subsequently visualized at transcriptional and translational levels. To our knowledge, this is the first such demonstration of HDR via gene editing in cassava.  more » « less
Award ID(s):
1827761
PAR ID:
10289192
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Smith, S M
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
11
Issue:
4
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Natural pest control is an alternative to pesticide use in agriculture, and may help to curb insect declines and promote crop production. Nonconsumptive interactions in natural pest control that historically have received far less attention than consumptive interactions, may have distinct impacts on pest damage suppression and may also mediate positive multipredator interactions. Additionally, when nonconsumptive effects are driven by natural enemy aggression, variation in alternative resources for enemies may impact the strength of pest control. Here we study control of the coffee berry borer (CBB),Hypothenemus hampei, by a keystone arboreal ant species,Azteca sericeasur, which exhibits a nonconsumptive effect on CBB by throwing them off coffee plants. We conducted two experiments to investigate: (1) if the strength of this behavior is driven by spatial or temporal variability in scale insect density (an alternative resource thatAztecatends for honeydew), (2) if this behavior mediates positive interactions betweenAztecaand other ground‐foraging ants, and (3) the effect this behavior has on the overall suppression of CBB damage in multipredator scenarios. Our behavioral experiment showed that nearly all interactions betweenAztecaand CBB are nonconsumptive and that this behavior occurs more frequently in the dry season and with higher densities of scale insects on coffee branches. Our multipredator experiment revealed that borers thrown off coffee plants byAztecacan survive and potentially damage other nearby plants but may be suppressed by ground‐foraging ants. Although we found no non‐additive effects betweenAztecaand ground‐foraging ants on overall CBB damage, together, both species resulted in the lowest level of plant damage with the subsequent reduction in “spillover” damage caused by thrown CBB, indicating spatial complementarity between predators. These results present a unique case of natural pest control, in which damage suppression is driven almost exclusively by nonconsumptive natural enemy aggression, as opposed to consumption or prey behavioral changes. Furthermore, our results demonstrate the variability that may occur in nonconsumptive pest control interactions when natural enemy aggressive behavior is impacted by alternative resources, and also show how these nonconsumptive effects can mediate positive interactions between natural enemies to enhance overall crop damage reduction. 
    more » « less
  2. null (Ed.)
    Abstract Cytosine base editors (CBEs) are promising tools for precise genome editing in plants. It is important to investigate potential off-target effects of an efficient CBE at the genome and transcriptome levels in a major crop. Based on comparison of five cytidine deaminases and two different promoters for expressing sgRNAs, we tested a highly efficient A3A/Y130F-BE3 system for efficient C-to-T base editing in tomato (Solanum lycopersicum). We then conducted whole-genome sequencing (WGS) of four base-edited tomato plants, three GFP-expressing control plants, and two wild-type (WT) plants. The sequencing depths ranged from 25X to 49X with read mapping rates above 97%. No sgRNA-dependent off-target mutations were detected. Our data show an average of ∼1000 single nucleotide variations (SNVs) and ∼100 insertions and deletions (indels) per GFP control plant. Base-edited plants had on average elevated levels of SNVs (∼1250) and indels (∼300) per plant. On average, about 200 more C-to-T (G-to-A) mutations were found in a base-edited plant than a GFP control plant, suggesting some level of sgRNA-independent off-target effects, though the difference is not statistically significant. We also conducted RNA sequencing (RNA-seq) of the same four base-edited plants and three GFP control plants. An average of ∼200 RNA SNVs was discovered per plant for either base-edited or GFP control plants. Furthermore, no specific enrichment of C-to-U mutations can be found in the base-edited plants. Hence, we cannot find any evidence for bona fide off-target mutations by A3A/Y130F-BE3 at the transcriptome level. 
    more » « less
  3. Canonical CRISPR-Cas9 genome editing technique has profoundly impacted the fields of plant biology, biotechnology, and crop improvement. Since non-homologous end joining (NHEJ) is usually considered to generate random indels, its high efficiency mutation is generally not pertinent to precise editing. Homology-directed repair (HDR) can mediate precise editing with supplied donor DNA, but it suffers from extreme low efficiency in higher plants. Therefore, precision editing in plants will be facilitated by the ability to predict NHEJ repair outcome and to improve HDR efficiency. Here, we report that NHEJ-mediated single nucleotide insertion at different rice genes is predictable based on DNA sequences at the target loci. Three mutation prediction tools (inDelphi, FORECasT, and SPROUT) have been validated in the rice plant system. We also evaluated the chimeric guide RNA (cgRNA) and Cas9-Retron precISe Parallel Editing via homologY (CRISPEY) strategies to facilitate donor template supply for improving HDR efficiency in Nicotiana benthamiana and rice. However, neither cgRNA nor CRISPEY improved plant HDR editing efficiency in this study. Interestingly, our data indicate that tethering of 200–250 nucleotides long sequence to either 5′ or 3′ ends of guide RNA did not significantly affect Cas9 cleavage activity. 
    more » « less
  4. Bose, Arpita (Ed.)
    ABSTRACT Using dissolved inorganic carbon (DIC) as a major carbon source, as autotrophs do, is complicated by the bedeviling nature of this substance. Autotrophs using the Calvin-Benson-Bassham cycle (CBB) are known to make use of a toolkit comprised of DIC transporters and carbonic anhydrase enzymes (CA) to facilitate DIC fixation. This minireview provides a brief overview of the current understanding of how toolkit function facilitates DIC fixation inCyanobacteriaand someProteobacteriausing the CBB and continues with a survey of the DIC toolkit gene presence in organisms using different versions of the CBB and other autotrophic pathways (reductive citric acid cycle, Wood-Ljungdahl pathway, hydroxypropionate bicycle, hydroxypropionate-hydroxybutyrate cycle, and dicarboxylate-hydroxybutyrate cycle). The potential function of toolkit gene products in these organisms is discussed in terms of CO2and HCO3supply from the environment and demand by the autotrophic pathway. The presence of DIC toolkit genes in autotrophic organisms beyond those using the CBB suggests the relevance of DIC metabolism to these organisms and provides a basis for better engineering of these organisms for industrial and agricultural purposes. 
    more » « less
  5. The receptor tyrosine kinase Ret plays a critical role in regulating enteric nervous system (ENS) development. Ret is important for proliferation, migration, and survival of enteric progenitor cells (EPCs). Ret also promotes neuronal fate, but its role during neuronal differentiation and in the adult ENS is less well understood. Inactivating RET mutations are associated with ENS diseases, e.g., Hirschsprung Disease, in which distal bowel lacks ENS cells. Zebrafish is an established model system for studying ENS development and modeling human ENS diseases. One advantage of the zebrafish model system is that their embryos are transparent, allowing visualization of developmental phenotypes in live animals. However, we lack tools to monitor Ret expression in live zebrafish. Here, we developed a new BAC transgenic line that expresses GFP under the ret promoter. We find that EPCs and the majority of ENS neurons express ret:GFP during ENS development. In the adult ENS, GFP+ neurons are equally present in females and males. In homozygous mutants of ret and sox10—another important ENS developmental regulator gene—GFP+ ENS cells are absent. In summary, we characterize a ret:GFP transgenic line as a new tool to visualize and study the Ret signaling pathway from early development through adulthood. 
    more » « less