Response solutions to the quasi-periodically forced systems with degenerate equilibrium: a simple proof of a result of W Si and J Si and extensions
- Award ID(s):
- 1800241
- PAR ID:
- 10289865
- Date Published:
- Journal Name:
- Nonlinearity
- Volume:
- 34
- Issue:
- 1
- ISSN:
- 0951-7715
- Page Range / eLocation ID:
- 372 to 393
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In area-selective processes, such as area-selective atomic layer deposition (AS-ALD), there is renewed interest in designing surface modification schemes allowing to tune the reactivity of the nongrowth (NG) substrates. Many efforts are directed toward small molecule inhibitors or atomic layers, which would modify selected surfaces to delay nucleation and provide NG properties in the target AS-ALD processes allowing for the manufacturing of smaller sized features than those produced with alternative approaches. Bromine termination of silicon surfaces, specifically Si(100) and Si(111), is evaluated as a potential pathway to design NG substrates for the deposition of metal oxides, and TiO2 (from cycles of sequential exposures of tetrakis-dimethylamido-titanium and water) is tested as a prototypical deposition material. Nucleation delays on the surfaces produced are comparable to those on H-terminated silicon that is commonly used as an NG substrate. However, the silicon surfaces produced by bromination are more stable, and even oxidation does not change their chemical reactivity substantially. Once the NG surface is eventually overgrown after a large number of ALD cycles, bromine remains at the interface between silicon and TiO2. The NG behavior of different crystal faces of silicon appears to be similar, albeit not identical, despite different arrangements and coverage of bromine atoms.more » « less
-
Inspired by the recent experimental realization of pnictogen–silicon analogues of benzene and great interest in silicene, phosphorene and their heavier counterparts, herein we designed three planar porous 2D nanomaterials, namely porous silaphosphorene (pSiP), silaarsenene (pSiAs) and silaantimonene (pSiSb), and systematically investigated their stability, and electronic and optical properties, as well as their potential as photocatalysts for water splitting. Porous silaphosphorene, silaarsenene and silaantimonene monolayers are all thermodynamically, dynamically and thermally stable, and the aromaticity in each six-membered Si 3 P 3 /Si 3 As 3 /Si 3 Sb 3 ring plays an important role in their enhanced stability. They are all semiconductors with direct band gaps of 1.93, 1.57 and 0.95 eV (HSE06) and have comparable carrier mobility to MoS 2 . Their good stability and exceptional electronic and optical properties make them promising candidates for applications in solar cells and other optoelectronics fields. Moreover, the suitable band edge alignments of pSiP and pSiAs monolayers endow them with potential applications as photocatalysts for water splitting.more » « less
An official website of the United States government

