The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: A unified description of gravity- and kinematics-induced segregation forces in dense granular flows

Particle segregation is common in natural and industrial processes involving flowing granular materials. Complex, and seemingly contradictory, segregation phenomena have been observed for different boundary conditions and forcing. Using discrete element method simulations, we show that segregation of a single particle intruder can be described in a unified manner across different flow configurations. A scaling relation for the net segregation force is obtained by measuring forces on an intruder particle in controlled-velocity flows where gravity and flow kinematics are varied independently. The scaling law consists of two additive terms: a buoyancy-like gravity-induced pressure gradient term and a shear rate gradient term, both of which depend on the particle size ratio. The shear rate gradient term reflects a kinematics-driven mechanism whereby larger (smaller) intruders are pushed toward higher (lower) shear rate regions. The scaling is validated, without refitting, in wall-driven flows, inclined wall-driven flows, vertical silo flows, and free-surface flows down inclines. Comparing the segregation force with the intruder weight results in predictions of the segregation direction that match experimental and computational results for various flow configurations. more »« less

Jing, Lu; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.(
, EPJ Web of Conferences)

Aguirre, M.A.; Luding, S.; Pugnaloni, L.A.; Soto, R.
(Ed.)

Particle segregation in geophysical and industrial granular flows is typically driven by gravity and shear. While gravity-induced segregation is relatively well understood, shear-induced segregation is not. In particular, what controls segregation in the absence of gravity and the interplay between shearand gravity-driven segregation remain unclear. Here, we explore the shear-induced segregation force on an intruder particle in controlled-velocity granular flows where the shear profile is systematically varied. The shear-induced segregation force is found to be proportional to the shear rate gradient, which effectively pushes the large intruder from lower to higher shear rate regions. A scaling law is developed for the segregation force that is accurate over a wide range of overburden pressures and shear rates, and hence inertial numbers.

Jing, Lu; Ottino, Julio M.; Umbanhowar, Paul B.; Lueptow, Richard M.(
, Journal of Fluid Mechanics)

The drag force on a spherical intruder in dense granular shear flows is studied using discrete element method simulations. Three regimes of the intruder dynamics are observed depending on the magnitude of the drag force (or the corresponding intruder velocity) and the flow inertial number: a fluctuation-dominated regime for small drag forces; a viscous regime for intermediate drag forces; and an inertial (cavity formation) regime for large drag forces. The transition from the viscous regime (linear force-velocity relation) to the inertial regime (quadratic force-velocity relation) depends further on the inertial number. Despite these distinct intruder dynamics, we find a quantitative similarity between the intruder drag in granular shear flows and the Stokesian drag on a sphere in a viscous fluid for intruder Reynolds numbers spanning five orders of magnitude. Beyond this first-order description, a modified Stokes drag model is developed that accounts for the secondary dependence of the drag coefficient on the inertial number and the intruder size and density ratios. When the drag model is coupled with a segregation force model for intruders in dense granular flows, it is possible to predict the velocity of gravity-driven segregation of an intruder particle in shear flow simulations.

Ganju, Sparsh; Bailey, Sean C.C.; Brehm, Christoph(
, Journal of Fluid Mechanics)

Direct numerical simulations are performed for incompressible, turbulent channel flow over a smooth wall and different sinusoidal wall roughness configurations at a constant $Re_\tau = 720$ . Sinusoidal walls are used to study the effects of well-defined geometric features of roughness-amplitude, $a$ , and wavelength, $\lambda$ , on the flow. The flow in the near-wall region is strongly influenced by both $a$ and $\lambda$ . Establishing appropriate scaling laws will aid in understanding the effects of roughness and identifying the relevant physical mechanisms. Using inner variables and the roughness function to scale the flow quantities provides support for Townsend's hypothesis, but inner scaling is unable to capture the flow physics in the near-wall region. We provide modified scaling relations considering the dynamics of the shear layer and its interaction with the roughness. Although not a particularly surprising observation, this study provides clear evidence of the dependence of flow features on both $a$ and $\lambda$ . With these relations, we are able to collapse and/or align peaks for some flow quantities and, thus, capture the effects of surface roughness on turbulent flows even in the near-wall region. The shear-layer scaling supports the hypothesis that the physical mechanisms responsible for turbulent kinetic energy production in turbulent flows over rough walls are greatly influenced by the shear layer and its interaction with the roughness elements. Finally, a semiempirical model is developed to predict the contribution of pressure and skin friction drag on the roughness element based purely on its geometric parameters and the corresponding shear-layer velocity scale.

The instability and transition to turbulence and its evolution in pulsatile flows, which involve reverse flows and unsteady flow separations, is the primary focus of this experimental work. A piston driven by a programmable DC servo motor was used to set-up a water flow system and provide the pulsation characteristics. Time-resolved particle image velocimetry data were acquired in a refractive index matching set-up by using a continuous wave laser and a high-frame-rate digital camera. The position of the piston was continuously recorded by a laser proximity sensor. Five different experiments were carried out with Reynolds numbers in the range of 535–4825 and Womersley numbers from 11.91 to 23.82. The non-stationarity of the data was addressed by incorporating trend removal methods involving low- and high-pass filtering of the data, and using empirical mode decomposition together with the relevant Hilbert–Huang transform to determine the intrinsic mode functions. This latter method is more appropriate for nonlinear and non-stationary cases, for which traditional analysis involving classical Fourier decomposition is not directly applicable. It was found that transition to turbulence is a spontaneous event covering the whole near-wall region. The instantaneous vorticity profiles show the development of a large-scale ring-like attached wall vortical layer (WVL) with smaller vortices of higher frequencies than the pulsation frequency superimposed, which point to a shear layer Kelvin–Helmholtz (K–H) type of instability. Inflectional instability leads to flow separation and the formation of a major roll-up structure with the K–H vortices superimposed. This structure breaks down in the azimuthal direction into smaller turbulence patches with vortical content, which appears to be the prevailing structural content of the flow at each investigated Reynolds number ( Re ). At higher Re numbers, the strength and extent of the vortices are larger and substantial disturbances appear in the free stream region of the flow, which are typical of pipe flows at transitional Re numbers. Turbulence appears to be produced at the locations of maximum or minimum vorticity within the attached WVL, in the ridges between the K–H vortices around the separated WVL and the upstream side of the secondary vortex where the flow impinges on the wall. This wall turbulence breaks away into the middle section of the pipe, at approximately $Re \ge 2200$ , by strong eruptions of the K–H vortices.

Suresh, Vikram; Gopalakrishnan, Ranganathan(
, Journal of aerosol science)

null
(Ed.)

The Langevin Dynamics (LD) method (also known in the literature as Brownian Dynamics) is routinely used to simulate aerosol particle trajectories for transport rate constant calculations as well as to understand aerosol particle transport in internal and external fluid flows. This tutorial intends to explain the methodological details of setting up a LD simulation of a population of aerosol particles and to deduce rate constants from an ensemble of classical trajectories. We discuss the applicability and limitations of the translational Langevin equation to model the combined stochastic and deterministic motion of particles in fields of force or fluid flow. The drag force and stochastic “diffusion” force terms that appear in the Langevin equation are discussed elaborately, along with a summary of common forces relevant to aerosol systems (electrostatic, gravity, van der Waals, …); a commonly used first order and a fourth order Runge-Kutta time stepping schemes for linear stochastic ordinary differential equations are presented. A MATLAB® implementation of a LD code for simulating particle settling under gravity using the first order scheme is included for illustration. Scaling analysis of aerosol transport processes and the selection of timestep and domain size for trajectory simulations are demonstrated through two specific aerosol processes: particle diffusion charging and coagulation. Fortran® implementations of the first order and fourth order time-stepping schemes are included for simulating the 3D motion of a particle in a periodic domain. Potential applications and caveats to the usage of LD are included as a summary.

Jing, Lu, Ottino, Julio M., Lueptow, Richard M., and Umbanhowar, Paul B. A unified description of gravity- and kinematics-induced segregation forces in dense granular flows. Retrieved from https://par.nsf.gov/biblio/10290123. Journal of Fluid Mechanics 925. Web. doi:10.1017/jfm.2021.688.

Jing, Lu, Ottino, Julio M., Lueptow, Richard M., & Umbanhowar, Paul B. A unified description of gravity- and kinematics-induced segregation forces in dense granular flows. Journal of Fluid Mechanics, 925 (). Retrieved from https://par.nsf.gov/biblio/10290123. https://doi.org/10.1017/jfm.2021.688

Jing, Lu, Ottino, Julio M., Lueptow, Richard M., and Umbanhowar, Paul B.
"A unified description of gravity- and kinematics-induced segregation forces in dense granular flows". Journal of Fluid Mechanics 925 (). Country unknown/Code not available. https://doi.org/10.1017/jfm.2021.688.https://par.nsf.gov/biblio/10290123.

@article{osti_10290123,
place = {Country unknown/Code not available},
title = {A unified description of gravity- and kinematics-induced segregation forces in dense granular flows},
url = {https://par.nsf.gov/biblio/10290123},
DOI = {10.1017/jfm.2021.688},
abstractNote = {Particle segregation is common in natural and industrial processes involving flowing granular materials. Complex, and seemingly contradictory, segregation phenomena have been observed for different boundary conditions and forcing. Using discrete element method simulations, we show that segregation of a single particle intruder can be described in a unified manner across different flow configurations. A scaling relation for the net segregation force is obtained by measuring forces on an intruder particle in controlled-velocity flows where gravity and flow kinematics are varied independently. The scaling law consists of two additive terms: a buoyancy-like gravity-induced pressure gradient term and a shear rate gradient term, both of which depend on the particle size ratio. The shear rate gradient term reflects a kinematics-driven mechanism whereby larger (smaller) intruders are pushed toward higher (lower) shear rate regions. The scaling is validated, without refitting, in wall-driven flows, inclined wall-driven flows, vertical silo flows, and free-surface flows down inclines. Comparing the segregation force with the intruder weight results in predictions of the segregation direction that match experimental and computational results for various flow configurations.},
journal = {Journal of Fluid Mechanics},
volume = {925},
author = {Jing, Lu and Ottino, Julio M. and Lueptow, Richard M. and Umbanhowar, Paul B.},
editor = {null}
}

Warning: Leaving National Science Foundation Website

You are now leaving the National Science Foundation website to go to a non-government website.

Website:

NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.