skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AI-assisted superresolution cosmological simulations – II. Halo substructures, velocities, and higher order statistics
ABSTRACT In this work, we expand and test the capabilities of our recently developed superresolution (SR) model to generate high-resolution (HR) realizations of the full phase-space matter distribution, including both displacement and velocity, from computationally cheap low-resolution (LR) cosmological N-body simulations. The SR model enhances the simulation resolution by generating 512 times more tracer particles, extending into the deeply nonlinear regime where complex structure formation processes take place. We validate the SR model by deploying the model in 10 test simulations of box size 100 h−1 Mpc, and examine the matter power spectra, bispectra, and two-dimensional power spectra in redshift space. We find the generated SR field matches the true HR result at per cent level down to scales of k ∼ 10 h  Mpc−1. We also identify and inspect dark matter haloes and their substructures. Our SR model generates visually authentic small-scale structures that cannot be resolved by the LR input, and are in good statistical agreement with the real HR results. The SR model performs satisfactorily on the halo occupation distribution, halo correlations in both real and redshift space, and the pairwise velocity distribution, matching the HR results with comparable scatter, thus demonstrating its potential in making mock halo catalogues. The SR technique can be a powerful and promising tool for modelling small-scale galaxy formation physics in large cosmological volumes.  more » « less
Award ID(s):
1909193 2020295 1817256
PAR ID:
10290285
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
507
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
1021 to 1033
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to $$k \sim 10\, h$$ Mpc−1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation. 
    more » « less
  2. ABSTRACT Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $$(25\, h^{-1}\, {\rm Mpc})^3$$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $$k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $$h\, \mathrm{Mpc}^{-1}$$. 
    more » « less
  3. Abstract There is untapped cosmological information in galaxy redshift surveys in the nonlinear regime. In this work, we use theAemulussuite of cosmologicalN-body simulations to construct Gaussian process emulators of galaxy clustering statistics at small scales (0.1–50h−1Mpc) in order to constrain cosmological and galaxy bias parameters. In addition to standard statistics—the projected correlation functionwp(rp), the redshift-space monopole of the correlation functionξ0(s), and the quadrupoleξ2(s)—we emulate statistics that include information about the local environment, namely the underdensity probability functionPU(s) and the density-marked correlation functionM(s). This extends the model ofAemulusIII for redshift-space distortions by including new statistics sensitive to galaxy assembly bias. In recovery tests, we find that the beyond-standard statistics significantly increase the constraining power on cosmological parameters of interest: includingPU(s) andM(s) improves the precision of our constraints on Ωmby 27%,σ8by 19%, and the growth of structure parameter,fσ8, by 12% compared to standard statistics. We additionally find that scales below ∼6h−1Mpc contain as much information as larger scales. The density-sensitive statistics also contribute to constraining halo occupation distribution parameters and a flexible environment-dependent assembly bias model, which is important for extracting the small-scale cosmological information as well as understanding the galaxy–halo connection. This analysis demonstrates the potential of emulating beyond-standard clustering statistics at small scales to constrain the growth of structure as a test of cosmic acceleration. 
    more » « less
  4. ABSTRACT Hydrodynamic simulations provide a powerful, but computationally expensive, approach to study the interplay of dark matter and baryons in cosmological structure formation. Here, we introduce the EMulating Baryonic EnRichment (EMBER) Deep Learning framework to predict baryon fields based on dark matter-only simulations thereby reducing computational cost. EMBER comprises two network architectures, U-Net and Wasserstein Generative Adversarial Networks (WGANs), to predict 2D gas and H i densities from dark matter fields. We design the conditional WGANs as stochastic emulators, such that multiple target fields can be sampled from the same dark matter input. For training we combine cosmological volume and zoom-in hydrodynamical simulations from the Feedback in Realistic Environments (FIRE) project to represent a large range of scales. Our fiducial WGAN model reproduces the gas and H i power spectra within 10 per cent accuracy down to ∼10 kpc scales. Furthermore, we investigate the capability of EMBER to predict high resolution baryon fields from low resolution dark matter inputs through upsampling techniques. As a practical application, we use this methodology to emulate high-resolution H i maps for a dark matter simulation of a $$L=100\, \text{Mpc}\, h^{ -1}$$ comoving cosmological box. The gas content of dark matter haloes and the H i column density distributions predicted by EMBER agree well with results of large volume cosmological simulations and abundance matching models. Our method provides a computationally efficient, stochastic emulator for augmenting dark matter only simulations with physically consistent maps of baryon fields. 
    more » « less
  5. ABSTRACT We quantify the impact of galaxy formation on dark matter halo shapes using cosmological simulations at redshift z = 0. Using magnetohydrodynamic simulations from the IllustrisTNG project, we focus on haloes of mass $$10^{10\!-\!14} \, \rm M_{\odot }$$ from the 50 Mpc (TNG50) and 100 Mpc (TNG100) boxes and compare them to dark matter-only (DMO) analogues and other simulations, e.g. Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) and Evolution and Assembly of GaLaxies and their Environments (EAGLE). We further quantify the prediction uncertainty by varying the feedback models using smaller 25 $${\rm Mpc}\, h^{-1}$$ boxes. We find that (i) galaxy formation results in rounder haloes compared to DMO simulations, in qualitative agreement with past results. Haloes of mass $${\approx }2\times 10^{12} \, \rm M_{\odot }$$ are most spherical, with an average minor-to-major axial ratio of $$\langle s \rangle$$ ≈ 0.75 in the inner halo, an increase of 40 per cent compared to their DMO counterparts. No significant difference is present for low-mass $$10^{10} \, \rm M_{\odot }$$ haloes; (ii) stronger feedback, e.g. increasing galactic wind speed, reduces the impact of baryons; (iii) the inner halo shape correlates with the stellar mass fraction, explaining the dependence of halo shapes on feedback models; and (iv) the fiducial and weaker feedback models are most consistent with observational estimates of the Milky Way halo shape. At fixed halo mass, very diverse and possibly unrealistic feedback models all predict inner shapes closer to one another than to the DMO results. Because of the large halo-to-halo variation in halo shape, a larger observational sample is required to statistically distinguish different baryonic prescriptions. 
    more » « less