ABSTRACT We forecast the prospects for cross-correlating future line intensity mapping (LIM) surveys with the current and future Ly-α forest measurements. Using large cosmological hydrodynamic simulations, we model the emission from the CO rotational transition in the CO Mapping Array Project LIM experiment at the 5-yr benchmark and the Ly-α forest absorption signal for extended Baryon Acoustic Oscillations (BOSS), Dark energy survey instrument (DESI), and Prime Focus multiplex Spectroscopy survey (PFS). We show that CO × Ly-α forest significantly enhances the detection signal-to-noise ratio (S/N) of CO, with up to $$300{{\ \rm per\, cent}}$$ improvement when correlated with the PFS Ly-α forest survey and a 50–75 per cent enhancement with the available eBOSS or the upcoming DESI observations. This is competitive with even CO × spectroscopic galaxy surveys. Furthermore, our study suggests that the clustering of CO emission is tightly constrained by CO × Ly-α forest due to the increased sensitivity and the simplicity of Ly-α absorption modelling. Foreground contamination or systematics are expected not to be shared between LIM and Ly-α forest observations, providing an unbiased inference. Ly-α forest will aid in detecting the first LIM signals. We also estimate that [C ii] × Ly-α forest measurements from Experiment for Cryogenic Large-Aperture Intensity Mapping and DESI/eBOSS should have a larger S/N than planned [C ii] × quasar observations by about an order of magnitude.
more »
« less
The PAU survey: Ly α intensity mapping forecast
ABSTRACT In this work, we explore the application of intensity mapping to detect extended Ly α emission from the IGM via cross-correlation of PAUS images with Ly α forest data from eBOSS and DESI. Seven narrow-band (FWHM = 13 nm) PAUS filters have been considered, ranging from 455 to 515 nm in steps of 10 nm, which allows the observation of Ly α emission in a range 2.7 < z < 3.3. The cross-correlation is simulated first in an area of 100 deg2 (PAUS projected coverage), and second in two hypothetical scenarios: a deeper PAUS (complete up to iAB < 24 instead of iAB < 23, observation time ×6), and an extended PAUS coverage of 225 deg2 (observation time ×2.25). A hydrodynamic simulation of size 400 Mpc h−1 is used to simulate both extended Ly α emission and absorption, while the foregrounds in PAUS images have been simulated using a lightcone mock catalogue. Using an optimistic estimation of uncorrelated PAUS noise, the total probability of a non-spurious detection is estimated to be 1.8 per cent and 4.5 per cent for PAUS-eBOSS and PAUS-DESI, from a run of 1000 simulated cross-correlations with different realisations of instrumental noise and quasar positions. The hypothetical PAUS scenarios increase this probability to 15.3 per cent (deeper PAUS) and 9.0 per cent (extended PAUS). With realistic correlated noise directly measured from PAUS images, these probabilities become negligible. Despite these negative results, some evidences suggest that this methodology may be more suitable to broad-band surveys.
more »
« less
- Award ID(s):
- 1909193
- PAR ID:
- 10290287
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 501
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3883 to 3899
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the detection of 21 cm emission at an average redshift in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyαforest from eBOSS. Data collected by CHIME over 88 days in the 400–500 MHz frequency band (1.8 <z< 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales withk∥≲ 0.13 Mpc−1at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyαforest flux transmission spectra to estimate the 21 cm–Lyαcross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σdetection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals ∼6–10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of 21 cm emission to date, and they set the stage for future 21 cm intensity mapping analyses atz> 1.8.more » « less
-
ABSTRACT Reionization-era galaxies tend to exhibit weak Ly α emission, likely reflecting attenuation from an increasingly neutral IGM. Recent observations have begun to reveal exceptions to this picture, with strong Ly α emission now known in four of the most massive z = 7–9 galaxies in the CANDELS fields, all of which also exhibit intense [O iii]+H β emission (EW > 800 Å). To better understand why Ly α is anomalously strong in a subset of massive z ≃ 7–9 galaxies, we have initiated an MMT/Binospec survey targeting a larger sample (N = 22) of similarly luminous (≃1–6 L$$^{\ast }_{\mathrm{UV}}$$) z ≃ 7 galaxies selected over very wide-area fields (∼3 deg2). We confidently (>7σ) detect Ly α in 78 per cent (7/9) of galaxies with strong [O iii]+H β emission (EW > 800 Å) as opposed to only 8 per cent (1/12) of galaxies with more moderate (EW = 200–800 Å) [O iii]+H β. We argue that the higher Ly α EWs of the strong [O iii]+H β population likely reflect enhanced ionizing photon production efficiency owing to their large sSFRs (≳30 Gyr−1). We also find evidence that Ly α transmission from massive galaxies declines less rapidly over 6 < z < 7 than in low-mass lensed systems. In particular, our data suggest no strong evolution in Ly α transmission, consistent with a picture wherein massive z ≃ 7 galaxies often reside in large ionized regions. We detect three closely separated (R = 1.7 physical Mpc) z ≃ 7 Ly α emitters in our sample, conceivably tracing a large ionized structure that is consistent with this picture. We detect tentative evidence for an overdensity in this region, implying a large ionizing photon budget in the surrounding volume.more » « less
-
ABSTRACT We measure the Lyman continuum (LyC) escape fraction in 54 faint Lyman-alpha emitters (LAEs) at $$z$$ ≃ 3.1 in the GOODS-South field. With the average magnitude of R = 26.7 AB (MUV = −18.8 and L ≃ 0.1L*), these galaxies represent a population of compact young dwarf galaxies. Their properties are likely to resemble those in the galaxies responsible for reionizing the Universe at $$z$$ > 6. We do not detect LyC emission in any individual LAEs in the deep HST F336W images, which covers the rest-frame 820 Å. We do not detect the LyC emission of these LAEs in the stacked F336W images either. The 3σ upper limit of LyC escape fractions is $$f_{\rm esc}\lt 14\!-\!32{{\ \rm per\ cent}}$$. However, the high Ly α rest-frame equivalent width (EW), low stellar mass, and UV luminosity of these LAEs suggest that they should have $$f_{\rm esc}\gt 50{{\ \rm per\ cent}}$$. The low LyC escape fraction from this work and other stacking analyses suggests that the LyC-leaking galaxies with $$f_{\rm esc}\gt 50{{\ \rm per\ cent}}$$ at $$z$$ = 2–3 do not follow the relation between fesc and UV luminosity and Ly α EW derived from typical galaxies at similar redshifts. Therefore, the UV luminosity and Ly α EW are not the best indicators for the LyC escape fraction.more » « less
-
Abstract Based on Sloan Digital Sky Survey Data Release 16, we have detected the large-scale structure of Ly α emission in the universe at redshifts z = 2–3.5 by cross-correlating quasar positions and Ly α emission imprinted in the residual spectra of luminous red galaxies. We apply an analytical model to fit the corresponding Ly α surface brightness profile and multipoles of the redshift-space quasar–Ly α emission cross-correlation function. The model suggests an average cosmic Ly α luminosity density of 6.6 − 3.1 + 3.3 × 10 40 erg s − 1 cMpc − 3 , a ∼2 σ detection with a median value about 8–9 times those estimated from deep narrowband surveys of Ly α emitters at similar redshifts. Although the low signal-to-noise ratio prevents us from a significant detection of the Ly α forest–Ly α emission cross-correlation, the measurement is consistent with the prediction of our best-fit model from quasar–Ly α emission cross-correlation within current uncertainties. We rule out the scenario where the Ly α photons mainly originate from quasars. We find that Ly α emission from star-forming galaxies, including contributions from that concentrated around the galaxy centers and that in diffuse Ly α -emitting halos, is able to explain the bulk of the Ly α luminosity density inferred from our measurements. Ongoing and future surveys can further improve the measurements and advance our understanding of the cosmic Ly α emission field.more » « less
An official website of the United States government

