skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vulnerability Assessment of Large-scale Power Systems to False Data Injection Attacks
This paper studies the vulnerability of large-scale power systems to false data injection (FDI) attacks through their physical consequences. An attacker-defender bi-level linear program (ADBLP) can be used to determine the worst-case consequences of FDI attacks aiming to maximize the physical power flow on a target line. This ADBLP can be transformed into a single-level mixed-integer linear program (MILP), but it is numerically intractable for power systems with a large number of buses and branches. In this paper, a modified Benders' decomposition algorithm is proposed to solve the ADBLP on large power systems without converting it to the MILP. Of more general interest, the proposed algorithm can be used to solve any ADBLP. Vulnerability of the IEEE 118-bus system and the Polish system with 2383 buses to FDI attacks is assessed using the proposed algorithm.  more » « less
Award ID(s):
1934766
PAR ID:
10291084
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intelligently designed false data injection (FDI) attacks have been shown to be able to bypass the chi-squared-test based bad data detector (BDD), resulting in physical consequences (such as line overloads) in the power system. In this paper, using synthetic PMU measurements and intelligently designed FDI attacks, it is shown that if an attack is suddenly injected into the system, a predictive filter with sufficient accuracy is able to detect it. However, an attacker can gradually increase the magnitude of the attack to avoid detection, and still cause damage to the system. 
    more » « less
  2. Increasing emphasis on reliability and resiliency call for advanced distribution system restoration (DSR). The integration of grid sensors, remote controls, and distributed generators (DG) brings about exciting opportunities in DSR. In this context, this work considers the task of single-step restoration of a single-phase power distribution system. Different from existing works, the devised restoration scheme achieves optimal formation of islands without heuristically pre-identifying reference buses. It further facilitates multiple DGs running within the same island, and establishes a coordination hierarchy in terms of their PV/PQ operation modes. Generators without black-start capability are guaranteed to remain connected to a black-start DG or a substation. The proposed scheme models remotely-controlled voltage regulators exactly, and integrates them in the restoration process. Numerical tests on a modified IEEE 37-bus feeder demonstrate that the proposed mixed-integer linear program (MILP) takes less than four seconds to handle random outages of 1-5 lines. The scalability of this novel MILP formulation can be attributed to the unique use of cycles and paths on the grid infrastructure graph; the McCormick linearization technique; and an approximate power flow model. 
    more » « less
  3. The urgent need for the decarbonization of power girds has accelerated the integration of renewable energy. Con-currently the increasing distributed energy resources (DER) and advanced metering infrastructures (AMI) have transformed the power grids into a more sophisticated cyber-physical system with numerous communication devices. While these transitions provide economic and environmental value, they also impose increased risk of cyber attacks and operational challenges. This paper investigates the vulnerability of the power grids with high renewable penetration against an intraday false data injection (FDI) attack on DER dispatch signals and proposes a kernel support vector regression (SVR) based detection model as a countermeasure. The intraday FDI attack scenario and the detection model are demonstrated in a numerical experiment using the HCE 187-bus test system. 
    more » « less
  4. This paper presents a false data injection (FDI) attack model to target a selection of plugged-in electric vehicles (EVs) in a smart power distribution system resulting in a range of operational issues including but not limited to voltage collapse. To reduce the total cost and difficulty of the cyberattack, attacker utilizes a pre-attack analysis via generating PV and VQ curves for the buses of the distribution system in order to precisely recognize the weakest buses of the system (i.e., the most vulnerable ones) and also the required active and reactive power to be injected into the targeted buses to result in voltage collapse. The effectiveness of the proposed attack model is validated on an IEEE test distribution system modified to contain distributed generation (DG) and EV aggregators. 
    more » « less
  5. Abstract The rise in smart water technologies has introduced new cybersecurity vulnerabilities for water infrastructures. However, the implications of cyber‐physical attacks on the systems like urban drainage systems remain underexplored. This research delves into this gap, introducing a method to quantify flood risks in the face of cyber‐physical threats. We apply this approach to a smart stormwater system—a real‐time controlled network of pond‐conduit configurations, fitted with water level detectors and gate regulators. Our focus is on a specific cyber‐physical threat: false data injection (FDI). In FDI attacks, adversaries introduce deceptive data that mimics legitimate system noises, evading detection. Our risk assessment incorporates factors like sensor noises and weather prediction uncertainties. Findings reveal that FDIs can amplify flood risks by feeding the control system false data, leading to erroneous outflow directives. Notably, FDI attacks can reshape flood risk dynamics across different storm intensities, accentuating flood risks during less severe but more frequent storms. This study offers valuable insights for strategizing investments in smart stormwater systems, keeping cyber‐physical threats in perspective. Furthermore, our risk quantification method can be extended to other water system networks, such as irrigation channels and multi‐reservoir systems, aiding in cyber‐defense planning. 
    more » « less