User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore,more »
Liquid Level Sensing Using Commodity WiFi in a Smart Home Environment
The popularity of Internet-of-Things (IoT) has provided us with unprecedented opportunities to enable a variety of emerging services in a smart home environment. Among those services, sensing the liquid level in a container is critical to building many smart home and mobile healthcare applications that improve the quality of life. This paper presents LiquidSense, a liquid level sensing system that is low-cost, high accuracy, widely applicable to different daily liquids and containers, and can be easily integrated with existing smart home networks. LiquidSense uses existing home WiFi network and a low-cost transducer that attached to the container to sense the resonance of the container for liquid level detection. In particular, our system mounts a low-cost transducer on the surface of the container and emits a well-designed chirp signal to make the container resonant, which introduces subtle changes to the home WiFi signals. By analyzing the subtle phase changes of the WiFi signals, LiquidSense extracts the resonance frequency as a feature for liquid level detection. Our system constructs prediction models for both continuous and discrete predictions using curve fitting and SVM respectively. We evaluate LiquidSense in home environments with containers of three different materials and six types of liquids. Results show more »
- Award ID(s):
- 1910519
- Publication Date:
- NSF-PAR ID:
- 10291089
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 4
- Issue:
- 1
- Page Range or eLocation-ID:
- 1 to 30
- ISSN:
- 2474-9567
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The first major goal of this project is to build a state-of-the-art information storage, retrieval, and analysis system that utilizes the latest technology and industry methods. This system is leveraged to accomplish another major goal, supporting modern search and browse capabilities for a large collection of tweets from the Twitter social media platform, web pages, and electronic theses and dissertations (ETDs). The backbone of the information system is a Docker container cluster running with Rancher and Kubernetes. Information retrieval and visualization is accomplished with containers in a pipelined fashion, whether in the cluster or on virtual machines, for Elasticsearch and Kibana, respectively. In addition to traditional searching and browsing, the system supports full-text and metadata searching. Search results include facets as a modern means of browsing among related documents. The system supports text analysis and machine learning to reveal new properties of collection data. These new properties assist in the generation of available facets. Recommendations are also presented with search results based on associations among documents and with logged user activity. The information system is co-designed by five teams of Virginia Tech graduate students, all members of the same computer science class, CS 5604. Although the project is an academicmore »
-
User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This paper supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV and thermostat, etc. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep learning based user authentication scheme to accurately identify each individual user. Extensive experiments in two typical indoor environments, a university office and an apartment, are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% and 91%more »
-
null (Ed.)Gesture recognition has become increasingly important in human-computer interaction and can support different applications such as smart home, VR, and gaming. Traditional approaches usually rely on dedicated sensors that are worn by the user or cameras that require line of sight. In this paper, we present fine-grained finger gesture recognition by using commodity WiFi without requiring user to wear any sensors. Our system takes advantages of the fine-grained Channel State Information available from commodity WiFi devices and the prevalence of WiFi network infrastructures. It senses and identifies subtle movements of finger gestures by examining the unique patterns exhibited in the detailed CSI. We devise environmental noise removal mechanism to mitigate the effect of signal dynamic due to the environment changes. Moreover, we propose to capture the intrinsic gesture behavior to deal with individual diversity and gesture inconsistency. Lastly, we utilize multiple WiFi links and larger bandwidth at 5GHz to achieve finger gesture recognition under multi-user scenario. Our experimental evaluation in different environments demonstrates that our system can achieve over 90% recognition accuracy and is robust to both environment changes and individual diversity. Results also show that our system can provide accurate gesture recognition under different scenarios.
-
WiFi human sensing has become increasingly attractive in enabling emerging human-computer interaction applications. The corresponding technique has gradually evolved from the classification of multiple activity types to more fine-grained tracking of 3D human poses. However, existing WiFi-based 3D human pose tracking is limited to a set of predefined activities. In this work, we present Winect, a 3D human pose tracking system for free-form activity using commodity WiFi devices. Our system tracks free-form activity by estimating a 3D skeleton pose that consists of a set of joints of the human body. In particular, we combine signal separation and joint movement modeling to achieve free-form activity tracking. Our system first identifies the moving limbs by leveraging the two-dimensional angle of arrival of the signals reflected off the human body and separates the entangled signals for each limb. Then, it tracks each limb and constructs a 3D skeleton of the body by modeling the inherent relationship between the movements of the limb and the corresponding joints. Our evaluation results show that Winect is environment-independent and achieves centimeter-level accuracy for free-form activity tracking under various challenging environments including the none-line-of-sight (NLoS) scenarios.