Photonics provide an efficient way to implement quantum walks, the quantum analog of classical random walks, which demonstrate rich physics with potential applications. However, most photonic quantum walks do not involve photon interactions, which limits their potential to explore strongly correlated many-body physics of light. We propose a strongly interacting discrete-time photonic quantum walk using a network of single atom beamsplitters. We calculate output statistics of the quantum walk for the case of two photons, which reveals the strongly correlated transport of photons. Particularly, the walk can exhibit either bosonlike or fermionlike statistics which is tunable by postselecting the two-photon detection time interval. Also, the walk can sort different types of two-photon bound states into distinct pairs of output ports under certain conditions. These unique phenomena show that our quantum walk is an intriguing platform to explore strongly correlated quantum many-body states of light. Finally, we propose an experimental realization based on time-multiplexed synthetic dimensions.
more »
« less
Boosting Item-based Collaborative Filtering via Nearly Uncoupled Random Walks
Item-based models are among the most popular collaborative filtering approaches for building recommender systems. Random walks can provide a powerful tool for harvesting the rich network of interactions captured within these models. They can exploit indirect relations between the items, mitigate the effects of sparsity, ensure wider itemspace coverage, as well as increase the diversity of recommendation lists. Their potential however, can be hindered by the tendency of the walks to rapidly concentrate towards the central nodes of the graph, thereby significantly restricting the range of K -step distributions that can be exploited for personalized recommendations. In this work, we introduce RecWalk ; a novel random walk-based method that leverages the spectral properties of nearly uncoupled Markov chains to provably lift this limitation and prolong the influence of users’ past preferences on the successive steps of the walk—thereby allowing the walker to explore the underlying network more fruitfully. A comprehensive set of experiments on real-world datasets verify the theoretically predicted properties of the proposed approach and indicate that they are directly linked to significant improvements in top- n recommendation accuracy. They also highlight RecWalk’s potential in providing a framework for boosting the performance of item-based models. RecWalk achieves state-of-the-art top- n recommendation quality outperforming several competing approaches, including recently proposed methods that rely on deep neural networks.
more »
« less
- Award ID(s):
- 1704074
- PAR ID:
- 10291119
- Date Published:
- Journal Name:
- ACM Transactions on Knowledge Discovery from Data
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 1556-4681
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Graph synthesis is a long-standing research problem. Many deep neural networks that learn about latent characteristics of graphs and generate fake graphs have been proposed. However, in many cases their scalability is too high to be used to synthesize large graphs. Recently, one work proposed an interesting scalable idea to learn and generate random walks that can be merged into a graph. Due to its difficulty, however, the random walk-based graph synthesis failed to show state-of-the-art performance in many cases. We present an improved random walk-based method by using negative random walks. In our experiments with 6 datasets and 8 baseline methods, our method shows the best performance in almost all cases. We achieve both high scalability and generation quality.more » « less
-
For a graph G on n vertices, naively sampling the position of a random walk of at time t requires work Ω(t). We desire local access algorithms supporting positionG(t) queries, which return the position of a random walk from some fixed start vertex s at time t, where the joint distribution of returned positions is 1/ poly(n) close to those of a uniformly random walk in ℓ1 distance. We first give an algorithm for local access to random walks on a given undirected d-regular graph with eO( 1 1−λ √ n) runtime per query, where λ is the second-largest eigenvalue of the random walk matrix of the graph in absolute value. Since random d-regular graphs G(n, d) are expanders with high probability, this gives an eO(√ n) algorithm for a graph drawn from G(n, d) whp, which improves on the naive method for small numbers of queries. We then prove that no algorithm with subconstant error given probe access to an input d-regular graph can have runtime better than Ω(√ n/ log(n)) per query in expectation when the input graph is drawn from G(n, d), obtaining a nearly matching lower bound. We further show an Ω(n1/4) runtime per query lower bound even with an oblivious adversary (i.e. when the query sequence is fixed in advance). We then show that for families of graphs with additional group theoretic structure, dramatically better results can be achieved. We give local access to walks on small-degree abelian Cayley graphs, including cycles and hypercubes, with runtime polylog(n) per query. This also allows for efficient local access to walks on polylog degree expanders. We show that our techniques apply to graphs with high degree by extending or results to graphs constructed using the tensor product (giving fast local access to walks on degree nϵ graphs for any ϵ ∈ (0, 1]) and Cartesian product.more » « less
-
Existing learning to rank models for information retrieval are trained based on explicit or implicit query-document relevance information. In this paper, we study the task of learning a retrieval model based on user-item interactions. Our model has potential applications to the systems with rich user-item interaction data, such as browsing and recommendation, in which having an accurate search engine is desired. This includes media streaming services and e-commerce websites among others. Inspired by the neural approaches to collaborative filtering and the language modeling approaches to information retrieval, our model is jointly optimized to predict user-item interactions and reconstruct the item textual descriptions. In more details, our model learns user and item representations such that they can accurately predict future user-item interactions, while generating an effective unigram language model for each item. Our experiments on four diverse datasets in the context of movie and product search and recommendation demonstrate that our model substantially outperforms competitive retrieval baselines, in addition to providing comparable performance to state-of-the-art hybrid recommendation models.more » « less
-
Cherifi, H. ; Mantegna, R.N. ; Rocha, L.M. ; Cherifi, C. ; Micciche, S. (Ed.)We investigate the statistical learning of nodal attribute distributions in homophily networks using random walks. Attributes can be discrete or continuous. A generalization of various existing canonical models, based on preferential attachment is studied, where new nodes form connections dependent on both their attribute values and popularity as measured by degree. We consider several canonical attribute agnostic sampling schemes such as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec 2016) that incorporate both classical random walk and non-backtracking propensities and propose new variants which use attribute information in addition to topological information to explore the network. The performance of such algorithms is studied on both synthetic networks and real world systems, and its dependence on the degree of homophily, or absence thereof, is assessed.more » « less