skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling
Systems exhibiting nonlinear dynamics, including but not limited to chaos, are ubiquitous across Earth Sciences such as Meteorology, Hydrology, Climate and Ecology, as well as Biology such as neural and cardiac processes. However, System Identification remains a challenge. In climate and earth systems models, while governing equations follow from first principles and understanding of key processes has steadily improved, the largest uncertainties are often caused by parameterizations such as cloud physics, which in turn have witnessed limited improvements over the last several decades. Climate scientists have pointed to Machine Learning enhanced parameter estimation as a possible solution, with proof-of-concept methodological adaptations being examined on idealized systems. While climate science has been highlighted as a "Big Data" challenge owing to the volume and complexity of archived model-simulations and observations from remote and in-situ sensors, the parameter estimation process is often relatively a "small data" problem. A crucial question for data scientists in this context is the relevance of state-of-the-art data-driven approaches including those based on deep neural networks or kernel-based processes. Here we consider a chaotic system - two-level Lorenz-96 - used as a benchmark model in the climate science literature, adopt a methodology based on Gaussian Processes for parameter estimation and compare the gains in predictive understanding with a suite of Deep Learning and strawman Linear Regression methods. Our results show that adaptations of kernel-based Gaussian Processes can outperform other approaches under small data constraints along with uncertainty quantification; and needs to be considered as a viable approach in climate science and earth system modeling.  more » « less
Award ID(s):
1735505
NSF-PAR ID:
10291933
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  2. Abstract

    We develop and demonstrate a new interpretable deep learning model specifically designed for image analysis in Earth system science applications. The neural network is designed to be inherently interpretable, rather than explained via post hoc methods. This is achieved by training the network to identify parts of training images that act as prototypes for correctly classifying unseen images. The new network architecture extends the interpretable prototype architecture of a previous study in computer science to incorporate absolute location. This is useful for Earth system science where images are typically the result of physics-based processes, and the information is often geolocated. Although the network is constrained to only learn via similarities to a small number of learned prototypes, it can be trained to exhibit only a minimal reduction in accuracy relative to noninterpretable architectures. We apply the new model to two Earth science use cases: a synthetic dataset that loosely represents atmospheric high and low pressure systems, and atmospheric reanalysis fields to identify the state of tropical convective activity associated with the Madden–Julian oscillation. In both cases, we demonstrate that considering absolute location greatly improves testing accuracies when compared with a location-agnostic method. Furthermore, the network architecture identifies specific historical dates that capture multivariate, prototypical behavior of tropical climate variability.

    Significance Statement

    Machine learning models are incredibly powerful predictors but are often opaque “black boxes.” The how-and-why the model makes its predictions is inscrutable—the model is not interpretable. We introduce a new machine learning model specifically designed for image analysis in Earth system science applications. The model is designed to be inherently interpretable and extends previous work in computer science to incorporate location information. This is important because images in Earth system science are typically the result of physics-based processes, and the information is often map based. We demonstrate its use for two Earth science use cases and show that the interpretable network exhibits only a small reduction in accuracy relative to black-box models.

     
    more » « less
  3. Abstract

    Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well‐mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro‐biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human‐ and climate‐induced perturbations. Although integration has started and co‐located measurements are well under way, tremendous challenges remain. In particular, even in this era of “big data,” we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model‐informed data collection strategies and to maximize data usage; (2) adopt a “simple but not simplistic,” or fit‐for‐purpose approach to include essential processes in process‐based models; (3) blend the use of process‐based and data‐driven models in the framework of “theory‐guided data science.” Within the framework of hypothesis testing, model‐data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro‐biogeochemistry, but also enable hind‐ and fore‐casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.

    This article is categorized under:

    Engineering Water > Methods

     
    more » « less
  4. Recently, there has been a major emphasis on developing data-driven approaches involving machine learning (ML) for high-speed static state estimation (SE) in power systems. The emphasis stems from the ability of ML to overcome difficulties associated with model-based approaches, such as handling of non-Gaussian measurement noise. However, topology changes pose a stiff challenge for performing ML-based SE because the training and test environments become different when such changes occur. This paper circumvents this challenge by formulating a graph neural network (GNN)-based time-synchronized state estimator that considers the physical connections of the power system during the training itself. The results obtained using the IEEE 118-bus system indicate that the GNN-based state estimator outperforms both the model-based linear state estimator and a data-driven deep neural network-based state estimator in the presence of non-Gaussian measurement noise and topology changes, respectively. 
    more » « less
  5. Deep Learning (DL) methods have been transforming computer vision with innovative adaptations to other domains including climate change. For DL to pervade Science and Engineering (S&EE) applications where risk management is a core component, well-characterized uncertainty estimates must accompany predictions. However, S&E observations and model-simulations often follow heavily skewed distributions and are not well modeled with DL approaches, since they usually optimize a Gaussian, or Euclidean, likelihood loss. Recent developments in Bayesian Deep Learning (BDL), which attempts to capture uncertainties from noisy observations, aleatoric, and from unknown model parameters, epistemic, provide us a foundation. Here we present a discrete-continuous BDL model with Gaussian and lognormal likelihoods for uncertainty quantification (UQ). We demonstrate the approach by developing UQ estimates on “DeepSD’‘, a super-resolution based DL model for Statistical Downscaling (SD) in climate applied to precipitation, which follows an extremely skewed distribution. We find that the discrete-continuous models outperform a basic Gaussian distribution in terms of predictive accuracy and uncertainty calibration. Furthermore, we find that the lognormal distribution, which can handle skewed distributions, produces quality uncertainty estimates at the extremes. Such results may be important across S&E, as well as other domains such as finance and economics, where extremes are often of significant interest. Furthermore, to our knowledge, this is the first UQ model in SD where both aleatoric and epistemic uncertainties are characterized. 
    more » « less