skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: High precise dating on the variation of the Asian summer monsoon since 37 ka BP
Abstract Comprehensive comparison of paleoclimate change based on records constrained by precise chronology and high-resolution is essential to explore the correlation and interaction within earth climate systems. Here, we propose a new stalagmite-based multidecadal resolved Asian summer monsoon (ASM) record spanning the past thirty-seven thousand years (ka BP, before ad 1950) from Furong Cave, southwestern China. This record is consistent with the published Chinese stalagmite sequences and shows that the dominant controls of the ASM dynamics include not only insolation and solar activity but also suborbital-scale hydroclimate events in the high latitudes of the northern hemisphere, such as the Heinrich events, Bølling-Allerød (BA), and Younger Dryas (YD). Benefit from the unprecedented accurate chronology, the timings of these events are precisely dated, with uncertainties of, at most, 40 years (2σ). The onset of the weak ASM during the YD began at 12.92 ka BP and lasted for 430 years. The occurrence of the 200-yr Older Dryas during the BA period was dated from 13.87 to 14.06 ka BP. The durations of the three Heinrich (H) events, H1, H2, and H3, are 14.33–18.29, 23.77–24.48, and 28.98–30.46 ka BP, respectively. Furong record shows surprisingly variable onset transitions of 980, 210, and 40 years for the corresponding weak ASM events. These discrepancies suggest different influences of the H events on ASM dynamics. During the periods of H 1–3, the obvious difference between our Furong record and NGRIP δ 18 O record indicated the decoupling correlation between the mid-low latitudes and high latitudes. On the other hand, synchronous climate change in high and low latitudes suggests another possibility which different to the dominant role of Northern high latitudes in triggering global climate change. Our high quality records also indicate a plausible different correlation between the high and mid-low latitudes under glacial and inter-glacial background, especially for the ASM regimes.  more » « less
Award ID(s):
1702816
NSF-PAR ID:
10292192
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hydroclimate of the southwestern United States (US) region changed abruptly during the latest Pleistocene as the continental ice sheets over North America retreated from their most southerly extent. To investigate the nature of this change, we present a new record from Lake Elsinore, located 36 km inland from the Pacific Ocean in Southern California and evaluate it in the context of records across the coastal and interior southwest United States, including northwest Mexico. The sediment core recovered from Lake Elsinore provides a continuous sequence with multi-decadal resolution spanning 19e9 ka BP. Sedimentological and geochemical analyses reveal hydrologic variability. In particular, sand and carbonate components indicate abrupt changes at the Oldest Dryas (OD), BøllingeAllerød (BA), and Younger Dryas (YD) transitions, consistent with the timing in Greenland. Hydrogen isotope analyses of the C28 nalkanoic acids from plant leaf waxes (dDwax) reveal a long term trend toward less negative values across 19 9 ka BP. dDwax values during the OD suggest a North Pacific moisture source for precipitation, consistent with the dipping westerlies hypothesis. We find no isotopic evidence for the North American Monsoon reaching as far west as Lake Elsinore; therefore, we infer that wet/dry changes in the coastal southwest were expressed through winter-season precipitation, consistent with modern climatology. Comparing Lake Elsinore to other southwest records (notably Cave of Bells and Fort Stanton) we find coincident timing of the major transitions (OD to BA, BA to YD) and hydrologic responses during the OD and BA. The hydrologic response, however, varied during the YD consistent with a dipole between the coastal and interior southwest. The coherent pattern of hydrologic responses across the interior southwest US and northwest Mexico during the OD (wet), the BA (drier), and YD (wet) follows changes in the Atlantic Meridional Overturning Circulation, presumably via its combined influence on North Pacific winter storm tracks and the extent/magnitude of the North American Monsoon. In contrast, Lake Elsinore and the coastal southwest experiences a deglacial drying trend punctuated by abrupt change at the OD to BA and BA to YD transitions. This trend tracks rising greenhouse gases through the deglacial, with an apparent southward shift in westerly moisture sources adjusting to the retreating ice sheet. 
    more » « less
  2. Abstract

    Climate is currently warming due to anthropogenic impact on the Earth’s atmosphere. To better understand the processes and feedbacks within the climate system that underlie this accelerating warming trend, it is useful to examine past periods of abrupt climate change that were driven by natural forcings. Glaciers provide an excellent natural laboratory for reconstructing the climate of the past as they respond sensitively to climate oscillations. Therefore, we study glacier systems and their behavior during the transition from colder to warmer climate phases, focusing on the period between 15 and 10 ka. Using a combination of geomorphological mapping and beryllium-10 surface exposure dating, we reconstruct ice extents in two glaciated valleys of the Silvretta Massif in the Austrian Alps. The mountain glacier record shows that general deglaciation after the Last Glacial Maximum (LGM) was repeatedly interrupted by glacier stabilization or readvance, perhaps during the Oldest Dryas to Bølling transition (landform age: 14.4 ± 1.0 ka) and certainly during the Younger Dryas (YD; 12.9–11.7 ka) and the Early Holocene (EH; 12–10 ka). The oldest landform age indicates a lateral ice margin that postdates the ‘Gschnitz’ stadial (ca. 17–16 ka) and predates the YD. It shows that local inner-alpine glaciers were more extensive until the onset of the Bølling warm phase (ca. 14.6 ka), or possibly even into the Bølling than during the subsequent YD. The second age group, ca. 80 m below the (pre-)Bølling ice margin, indicates glacier extents during the YD cold phase and captures the spatial and temporal fine structure of glacier retreat during this period. The ice surface lowered approximately 50–60 m through the YD, which is indicative of milder climate conditions at the end of the YD compared to its beginning. Finally, the third age group falls into a period of more substantial warming, the YD–EH transition, and shows discontinuous glacier retreat during the glacial to interglacial transition. The new geochronologies synthesized with pre-existing moraine records from the Silvretta Massif evidence multiple cold phases that punctuated the general post-LGM warming trend and illustrate the sensitive response of Silvretta glaciers to abrupt climate oscillations in the past.

     
    more » « less
  3. Abstract

    We reconstructed hydroclimate variability in the Yucatán Peninsula (YP) based on stalagmite oxygen and carbon isotope records from a well-studied cave system located in the northeastern YP, a region strongly influenced by Caribbean climate dynamics. The new stalagmite isotopic records span the time interval between 43 and 26.6 ka BP, extending a previously published record from the same cave system covering the interval between 26.5 and 23.2 ka BP. Stalagmite stable isotope records show dominant decadal and multidecadal variability, and weaker variability on millennial timescales. These records suggest significant precipitation declines in the broader Caribbean region during Heinrich events 4 and 3 of ice-rafted discharge into the North Atlantic, in agreement with the antiphase pattern of precipitation variability across the equator suggested by previous studies. On millennial timescales, the stalagmite isotope records do not show the distinctive saw-tooth pattern of climate variability observed in Greenland during Dansgaard–Oeschger (DO) events, but a pattern similar to North Atlantic sea surface temperature (SST) variability. We propose that shifts in the mean position of the Intertropical Convergence Zone (ITCZ), per se, are not the dominant driver of last glacial hydroclimate variability in the YP on millennial timescales but instead that North Atlantic SSTs played a dominant role. Our results support a negative climate feedback mechanism whereby large low latitude precipitation deficits resulting from AMOC slowdown would lead to elevated salinity in the Caribbean and ultimately help reactivate AMOC and Caribbean precipitation. However, because of the unique drivers of future climate in the region, predicted twenty-first century YP precipitation reductions are unlikely to be modulated by this negative feedback mechanism.

     
    more » « less
  4. Iberia is predicted under future warming scenarios to be increasingly impacted by drought. While it is known that this region has experienced multiple intervals of enhanced aridity over the Holocene, additional hydroclimate-sensitive records from Iberia are necessary to place current and future drying into a broader perspective. Toward that end, we present a multi-proxy composite record from six well-dated and overlapping speleothems from Buraca Gloriosa (BG) cave, located in western Portugal. The coherence between the six stalagmites in this composite stalagmite record illustrates that climate (not in-cave processes) impacts speleothem isotopic values. This record provides the first high-resolution, precisely dated, terrestrial record of Holocene hydroclimate from west-central Iberia. The BG record reveals that aridity in western Portugal increased secularly from 9.0 ka BP to present, as evidenced by rising values of both carbon (δ13C) and oxygen (δ18O) stable isotope values. This trend tracks the decrease in Northern Hemisphere summer insolation and parallels Iberian margin sea surface temperatures (SST). The increased aridity over the Holocene is consistent with changes in Hadley Circulation and a southward migration of the Intertropical Convergence Zone (ITCZ). Centennial-scale shifts in hydroclimate are coincident with changes in total solar irradiance (TSI) after 4 ka BP. Several major drying events are evident, the most prominent of which was centered around 4.2 ka BP, a feature also noted in other Iberian climate records and coinciding with well-documented regional cultural shifts. Substantially, wetter conditions occurred from 0.8 ka BP to 0.15 ka BP, including much of the ‘Little Ice Age’. This was followed by increasing aridity toward present day. This composite stalagmite proxy record complements oceanic records from coastal Iberia, lacustrine records from inland Iberia, and speleothem records from both northern and southern Spain and depicts the spatial and temporal variability in hydroclimate in Iberia.

     
    more » « less
  5. Abstract. The last deglaciation, which occurred from 18 000 to 11 000 years ago,is the most recent large natural climatic variation of global extent. Withaccurately dated paleoclimate records, we can investigate the timings ofrelated variables in the climate system during this major transition. Here,we use an accurate relative chronology to compare temperature proxy data andglobal atmospheric CO2 as recorded in Antarctic ice cores. In addition tofive regional records, we compare a δ18O stack, representingAntarctic climate variations with the high-resolution robustly dated WAISDivide CO2 record (West Antarctic Ice Sheet). We assess the CO2 and Antarctic temperature phaserelationship using a stochastic method to accurately identify the probabletimings of changes in their trends. Four coherent changes are identified forthe two series, and synchrony between CO2 and temperature is within the95 % uncertainty range for all of the changes except the end of glacial termination 1 (T1). During the onset of the last deglaciation at 18 ka and the deglaciationend at 11.5 ka, Antarctic temperature most likely led CO2 by several centuries (by 570 years, within a range of 127 to 751 years, 68 %probability, at the T1 onset; and by 532 years, within a range of 337 to 629years, 68 % probability, at the deglaciation end). At 14.4 ka, the onsetof the Antarctic Cold Reversal (ACR) period, our results do not show a clearlead or lag (Antarctic temperature leads by 50 years, within a range of−137 to 376 years, 68 % probability). The same is true at the end of the ACR(CO2 leads by 65 years, within a range of 211 to 117 years, 68 %probability). However, the timings of changes in trends for the individualproxy records show variations from the stack, indicating regional differencesin the pattern of temperature change, particularly in the WAIS Divide recordat the onset of the deglaciation; the Dome Fuji record at the deglaciationend; and the EDML record after 16 ka (EPICA Dronning Maud Land, where EPICA is the European Project for Ice Coring in Antarctica). In addition, two changes – one at 16 ka in the CO2 record and one after the ACR onset in three of theisotopic temperature records – do not have high-probability counterparts in the other record. The likely-variable phasing we identify testify to thecomplex nature of the mechanisms driving the carbon cycle and Antarctictemperature during the deglaciation. 
    more » « less