Recovering multi-person 3D poses and shapes with absolute scales from a single RGB image is a challenging task due to the inherent depth and scale ambiguity from a single view. Current works on 3D pose and shape estimation tend to mainly focus on the estimation of the 3D joint locations relative to the root joint , usually defined as the one closest to the shape centroid, in case of humans defined as the pelvis joint. In this paper, we build upon an existing multi-person 3D mesh predictor network, ROMP, to create Absolute-ROMP. By adding absolute root joint localization in the camera coordinate frame, we are able to estimate multi-person 3D poses and shapes with absolute scales from a single RGB image. Such a single-shot approach allows the system to better learn and reason about the inter-person depth relationship, thus improving multi-person 3D estimation. In addition to this end to end network, we also train a CNN and transformer hybrid network, called TransFocal, to predict the f ocal length of the image’s camera. Absolute-ROMP estimates the 3D mesh coordinates of all persons in the image and their root joint locations normalized by the focal point. We then use TransFocal to obtain focal length and get absolute depth information of all joints in the camera coordinate frame. We evaluate Absolute-ROMP on the root joint localization and root-relative 3D pose estimation tasks on publicly available multi-person 3D pose datasets. We evaluate TransFocal on dataset created from the Pano360 dataset and both are applicable to in-the-wild images and videos, due to real time performance. 
                        more » 
                        « less   
                    
                            
                            TesseTrack: End-to-End Learnable Multi-Person Articulated 3D Pose Tracking
                        
                    
    
            We consider the task of 3D pose estimation and tracking of multiple people seen in an arbitrary number of camera feeds. We propose TesseTrack, a novel top-down approach that simultaneously reasons about multiple individuals’ 3D body joint reconstructions and associations in space and time in a single end-to-end learnable framework. At the core of our approach is a novel spatio-temporal formulation that operates in a common voxelized feature space aggregated from single- or multiple camera views. After a person detection step, a 4D CNN produces short-term persons pecific representations which are then linked across time by a differentiable matcher. The linked descriptions are then merged and deconvolved into 3D poses. This joint spatio-temporal formulation contrasts with previous piecewise strategies that treat 2D pose estimation, 2D-to-3D lifting, and 3D pose tracking as independent sub-problems that are error-prone when solved in isolation. Furthermore, unlike previous methods, TesseTrack is robust to changes in the number of camera views and achieves very good results even if a single view is available at inference time. Quantitative evaluation of 3D pose reconstruction accuracy on standard benchmarks shows significant improvements over the state of the art. Evaluation of multi-person articulated 3D pose tracking in our novel evaluation framework demonstrates the superiority of TesseTrack over strong baselines. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10292809
- Date Published:
- Journal Name:
- International Conference on Computer Vision and Pattern Recognition (CVPR)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            One of the grand challenges in computer vision is to recover 3D poses and shapes of multiple human bodies with absolute scales from a single RGB image. The challenge stems from the inherent depth and scale ambiguity from a single view. The state of the art on 3D human pose and shape estimation mainly focuses on estimating the 3D joint locations relative to the root joint, defined as the pelvis joint. In this paper, a novel approach called Absolute-ROMP is proposed, which builds upon a one-stage multi-person 3D mesh predictor network, ROMP, to estimate multi-person 3D poses and shapes, but with absolute scales from a single RGB image. To achieve this, we introduce absolute root joint localization in the camera coordinate frame, which enables the estimation of 3D mesh coordinates of all persons in the image and their root joint locations normalized by the focal point. Moreover, a CNN and transformer hybrid network, called TransFocal, is proposed to predict the focal length of the image’s camera. This enables Absolute-ROMP to obtain absolute depth information of all joints in the camera coordinate frame, further improving the accuracy of our proposed method. The Absolute-ROMP is evaluated on the root joint localization and root-relative 3D pose estimation tasks on publicly available multi-person 3D pose datasets, and TransFocal is evaluated on a dataset created from the Pano360 dataset. Our proposed approach achieves state-of-the-art results on these tasks, outperforming existing methods or has competitive performance. Due to its real-time performance, our method is applicable to in-the-wild images and videos.more » « less
- 
            We propose UniPose+, a unified framework for 2D and 3D human pose estimation in images and videos. The UniPose+ architecture leverages multi-scale feature representations to increase the effectiveness of backbone feature extractors, with no significant increase in network size and no postprocessing. Current pose estimation methods heavily rely on statistical postprocessing or predefined anchor poses for joint localization. The UniPose+ framework incorporates contextual information across scales and joint localization with Gaussian heatmap modulation at the decoder output to estimate 2D and 3D human pose in a single stage with state-of-the-art accuracy, without relying on predefined anchor poses. The multi-scale representations allowed by the waterfall module in the UniPose+ framework leverage the efficiency of progressive filtering in the cascade architecture, while maintaining multi-scale fields-of-view comparable to spatial pyramid configurations. Our results on multiple datasets demonstrate that UniPose+, with a HRNet, ResNet or SENet backbone and waterfall module, is a robust and efficient architecture for single person 2D and 3D pose estimation in single images and videos.more » « less
- 
            In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation. Our model directly takes 2D pose as input and learns a generalized 2D-3D mapping function. The proposed model consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bi-directional RNNs (BRNN) on the top to explicitly incorporate a set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor coordination). The proposed model thus enforces high-level constraints over human poses. In learning, we develop a pose sample simulator to augment training samples in virtual camera views, which further improves our model generalizability. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization capability of different methods.We empirically observe that most state-of-the-art methods encounter difficulty under such setting while our method can well handle such challenges.more » « less
- 
            FlowCam: Training generalizable 3D radiance fields without camera poses via pixel-aligned scene flowReconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning. The key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion, which is prohibitively expensive to run at scale. We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass. We estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via differentiable rendering, preserving locality and shift-equivariance of the image processing backbone. SE(3) camera pose estimation is then performed via a weighted least-squares fit to the scene flow field. This formulation enables us to jointly supervise pose estimation and a generalizable neural scene representation via re-rendering the input video, and thus, train end-to-end and fully self-supervised on real-world video datasets. We demonstrate that our method performs robustly on diverse, real-world video, notably on sequences traditionally challenging to optimization-based pose estimation techniques.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    