skip to main content

Title: Elastic Metasurfaces for Full Wavefront Control and Low-Frequency Energy Harvesting
Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low-frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to the baseline harvester on the pure plate without metasurface.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Vibration and Acoustics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metasurfaces exhibiting spatially asymmetric inner structures have been shown to host unidirectional scattering effects, benefiting areas where directional control of waves is desired. In this work, we propose a non-Hermitian planar elastic metasurface to achieve unidirectional focusing of flexural waves. The unit cells are constructed by piezoelectric disks and metallic blocks that are asymmetrically loaded. A tunable material loss is then introduced by negative capacitance shunting. By suitably engineering the induced loss profile, a series of unit cells are designed, which can individually access the exceptional points manifested by unidirectional zero reflection. We then construct a planar metasurface by tuning the reflected phase to ensure constructive interference at one side of the metasurface. Unidirectional focusing of the incident waves is demonstrated, where the reflected wave energy is focused from one direction, and zero reflection is observed in the other direction. The proposed metasurface enriches the flexibility in asymmetric elastic wave manipulation as the loss and the reflected phase can be tailored independently in each unit cell. 
    more » « less
  2. During the past decade, metasurfaces have shown great potential to complement standard optics, providing novel pathways to control the phase, amplitude, and polarization of electromagnetic waves utilizing arrays of subwavelength resonators. We present dynamic surface wave (SW) switching at terahertz frequencies utilizing a mechanically reconfigurable metasurface. Our metasurface is based on a microelectromechanical system (MEMS) consisting of an array of micro-cantilever structures, enabling dynamic tuning between a plane wave (PW) and a SW for normal incidence terahertz radiation. This is realized using line-by-line voltage control of the cantilever displacements to achieve full-span (2π<#comment/>) phase control. Full-wave electromagnetic simulations and terahertz time-domain spectroscopy agree with coupled mode theory, which was employed to design the metasurface device. A conversion efficiency of nearly 60% has been achieved upon switching between the PW and SW configurations. Moreover, a nearly 100 GHz working bandwidth is demonstrated. The MEMS-based control modality we demonstrate can be used for numerous applications, including but not limited to terahertz multifunctional metasurface devices for spatial light modulation, dynamic beam steering, focusing, and beam combining, which are crucial for future “beyond 5G” communication systems.

    more » « less
  3. Tunable piezoelectric metasurfaces have been proposed as a means of adaptively steering incident elastic waves for various applications in vibration mitigation and control. Bonding piezoelectric material to thin structures introduces electromechanical coupling, enabling structural dynamics to be altered via tunable electric shunts connected across each unit cell. For example, by carefully calibrating the inductive shunts, it is possible to implement the discrete phase shifts necessary for gradient-based waveguiding behaviors. However, experimental validations of localized phase shifting are challenging due to the narrow bandgap of local resonators, resulting in poor transmission of incident waves and high sensitivity to transient noise. These factors, in combination with the difficulties in experimental circuitry synthesis, can lead to significant variability of data acquired within the bandgap operating region. This paper presents a systematic approach for extracting localized phase shifts by taking advantage of the inherent correlation between the incident and transmitted wavefronts. During this procedure, matched filtering greatly reduces noise in the transmitted signal when operating in or near bandgap frequencies. Experimental results demonstrate phase shifts as large as −170° within the locally resonant bandgap, with an average 28% reduction in error relative to a direct time domain measurement of phase, enabling effective comparison of the dispersive behavior with corresponding analytical and finite element models. In addition to demonstrating the tunable waveguide characteristics of a piezoelectric metasurface, this technique can easily be extended to validate localized phase shifting of other elastic waveguiding metasurfaces.

    more » « less
  4. While elastic metasurfaces offer a remarkable and very effective approach to the subwavelength control of stress waves, their use in practical applications is severely hindered by intrinsically narrow band performance. In applications to electromagnetic and photonic metamaterials, some success in extending the operating dynamic range was obtained by using nonlocality. However, while electronic properties in natural materials can show significant nonlocal effects, even at the macroscales, in mechanics, nonlocality is a higher-order effect that becomes appreciable only at the microscales. This study introduces the concept of intentional nonlocality as a fundamental mechanism to design passive elastic metasurfaces capable of an exceptionally broadband operating range. The nonlocal behavior is achieved by exploiting nonlocal forces, conceptually akin to long-range interactions in nonlocal material microstructures, between subsets of resonant unit cells forming the metasurface. These long-range forces are obtained via carefully crafted flexible elements, whose specific geometry and local dynamics are designed to create remarkably complex transfer functions between multiple units. The resulting nonlocal coupling forces enable achieving phase-gradient profiles that are functions of the wavenumber of the incident wave. The identification of relevant design parameters and the assessment of their impact on performance are explored via a combination of semianalytical and numerical models. The nonlocal metasurface concept is tested, both numerically and experimentally, by embedding a total-internal-reflection design in a thin-plate waveguide. Results confirm the feasibility of the intentionally nonlocal design concept and its ability to achieve a fully passive and broadband wave control.

    more » « less
  5. Abstract

    Metasurfaces are planar structures that can offer unprecedented freedoms to manipulate electromagnetic wavefronts at deep‐subwavelength scale. The wavelength‐dependent behavior of the metasurface could severely reduce the design freedom. Besides, realizing high‐efficiency metasurfaces with a simple design procedure and easy fabrication is of great interest. Here, a novel approach to design highly efficient meta‐atoms that can achieve full 2π phase coverage at two wavelengths independently in the transmission mode is proposed. More specifically, a bilayer meta‐atom is designed to operate at two wavelengths, the cross‐polarized transmission efficiencies of which reach more than 70% at both wavelengths. The 2π phase modulations at two wavelengths under the circularly polarized incidence can be achieved independently by varying the orientations of the two resonators constructing the meta‐atom based on Pancharatnam–Berry phase principle. As proof‐of‐concept demonstrations, three dual‐wavelength meta‐devices employing the proposed meta‐atom are numerically investigated and experimentally verified, including two metalenses (1D and 2D) with the same focusing length and a vortex beam generator carrying different orbital angular momentum modes at two operation wavelengths. Both the simulation and experimental results satisfy the design goals, which validate the proposed approach.

    more » « less