skip to main content


Title: Scheduling Challenges for Variable Capacity Resources
Datacenter scheduling research often assumes resources as a constant quantity, but increasingly external factors shape capacity dynamically, and beyond the control of an operator. Based on emerging examples, we define a new, open research challenge: the variable capacity resource scheduling problem. The objective here is effective resource utilization despite sudden, perhaps large, changes in the available resources. We define the problem, key dimensions of resource capacity variation, and give specific examples that arise from the natural world (carbon- content, power price, datacenter cooling, and more). Key dimensions of the resource capacity variation include dynamic range, frequency, and structure. With these dimensions, an empirical trace can be character- ized, abstracting it from the many possible important real-world generators of variation. Resource capacity variation can arise from many causes including weather, market prices, renewable energy, carbon emission targets, and internal dynamic power management constraints. We give examples of three dif- ferent sources of variable capacity. Finally, we show variable resource capacity presents new scheduling challenges. We show how variation can cause significant performance degra- dation in existing schedulers, with up to 60% goodput reduction. Further, initial results also show intelligent scheduling techniques can be helpful. These insights show the promise and opportunity for future scheduling studies on resource volatility.  more » « less
Award ID(s):
1832230
NSF-PAR ID:
10293164
Author(s) / Creator(s):
;
Editor(s):
Cirne, Walfredo; Rodrigo, Gonzalo P.; Klusáček, Dalibor
Date Published:
Journal Name:
Proceedings of JSSPP21
Volume:
12985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cirne, Walfredo ; Rodrigo, Gonzalo P. ; Klusáček, Dalibor (Ed.)
    Datacenter scheduling research often assumes resources as a constant quantity, but increasingly external factors shape capacity dynamically, and beyond the control of an operator. Based on emerging examples, we define a new, open research challenge: the variable capacity resource scheduling problem. The objective here is effective resource utilization despite sudden, perhaps large, changes in the available resources. We define the problem, key dimensions of resource capacity variation, and give specific examples that arise from the natural world (carboncontent, power price, datacenter cooling, and more). Key dimensions of the resource capacity variation include dynamic range, frequency, and structure. With these dimensions, an empirical trace can be characterized, abstracting it from the many possible important real-world generators of variation. Resource capacity variation can arise from many causes including weather, market prices, renewable energy, carbon emission targets, and internal dynamic power management constraints. We give examples of three different sources of variable capacity. Finally, we show variable resource capacity presents new scheduling challenges. We show how variation can cause significant performance degradation in existing schedulers, with up to 60% goodput reduction. Further, initial results also show intelligent scheduling techniques can be helpful. These insights show the promise and opportunity for future scheduling studies on resource volatility. 
    more » « less
  2. Traditional datacenter design and optimization for TCO and PUE is based on static views of power grids as well as computational loads. Power grids exhibit increasingly variable price and carbon-emissions, becoming more so as government initiatives drive further decarbonization. The resulting opportunities require dynamic, temporal metrics (eg. not simple averages), flexible systems and intelligent adaptive control. Two research areas represent new opportunities to reduce both carbon and cost in this world of variable power, carbon, and price. First, the design and optimization of flexible datacenters. Second, cloud resource, power, and application management for variable-capacity datacenters. For each, we describe the challenges and potential benefits. 
    more » « less
  3. Abstract Why the new findings matter

    The process of teaching and learning is complex, multifaceted and dynamic. This paper contributes a seminal resource to highlight the digitisation of the educational sciences by demonstrating how new machine learning methods can be effectively and reliably used in research, education and practical application.

    Implications for educational researchers and policy makers

    The progressing digitisation of societies around the globe and the impact of the SARS‐COV‐2 pandemic have highlighted the vulnerabilities and shortcomings of educational systems. These developments have shown the necessity to provide effective educational processes that can support sometimes overwhelmed teachers to digitally impart knowledge on the plan of many governments and policy makers. Educational scientists, corporate partners and stakeholders can make use of machine learning techniques to develop advanced, scalable educational processes that account for individual needs of learners and that can complement and support existing learning infrastructure. The proper use of machine learning methods can contribute essential applications to the educational sciences, such as (semi‐)automated assessments, algorithmic‐grading, personalised feedback and adaptive learning approaches. However, these promises are strongly tied to an at least basic understanding of the concepts of machine learning and a degree of data literacy, which has to become the standard in education and the educational sciences.

    Demonstrating both the promises and the challenges that are inherent to the collection and the analysis of large educational data with machine learning, this paper covers the essential topics that their application requires and provides easy‐to‐follow resources and code to facilitate the process of adoption.

     
    more » « less
  4. Compute heterogeneity is increasingly gaining prominence in modern datacenters due to the addition of accelerators like GPUs and FPGAs. We observe that datacenter schedulers are agnostic of these emerging accelerators, especially their resource utilization footprints, and thus, not well equipped to dynamically provision them based on the application needs. We observe that the state-of-the-art datacenter schedulers fail to provide fine-grained resource guarantees for latency-sensitive tasks that are GPU-bound. Specifically for GPUs, this results in resource fragmentation and interference leading to poor utilization of allocated GPU resources. Furthermore, GPUs exhibit highly linear energy efficiency with respect to utilization and hence proactive management of these resources is essential to keep the operational costs low while ensuring the end-to-end Quality of Service (QoS) in case of user-facing queries.Towards addressing the GPU orchestration problem, we build Knots, a GPU-aware resource orchestration layer and integrate it with the Kubernetes container orchestrator to build Kube- Knots. Kube-Knots can dynamically harvest spare compute cycles through dynamic container orchestration enabling co-location of latency-critical and batch workloads together while improving the overall resource utilization. We design and evaluate two GPU-based scheduling techniques to schedule datacenter-scale workloads through Kube-Knots on a ten node GPU cluster. Our proposed Correlation Based Prediction (CBP) and Peak Prediction (PP) schemes together improves both average and 99 th percentile cluster-wide GPU utilization by up to 80% in case of HPC workloads. In addition, CBP+PP improves the average job completion times (JCT) of deep learning workloads by up to 36% when compared to state-of-the-art schedulers. This leads to 33% cluster-wide energy savings on an average for three different workloads compared to state-of-the-art GPU-agnostic schedulers. Further, the proposed PP scheduler guarantees the end-to-end QoS for latency-critical queries by reducing QoS violations by up to 53% when compared to state-of-the-art GPU schedulers. 
    more » « less
  5. Datacenter capacity is growing exponentially to satisfy the increasing demand for many emerging computationally-intensive applications, such as deep learning. This trend has led to concerns over datacenters’ increasing energy consumption and carbon footprint. The most basic prerequisite for optimizing a datacenter’s energy- and carbon-efficiency is accurately monitoring and attributing energy consumption to specific users and applications. Since datacenter servers tend to be multi-tenant, i.e., they host many applications, server- and rack-level power monitoring alone does not provide insight into the energy usage and carbon emissions of their resident applications. At the same time, current application-level energy monitoring and attribution techniques are intrusive: they require privileged access to servers and necessitate coordinated support in hardware and software, neither of which is always possible in cloud environments. To address the problem, we design WattScope, a system for non-intrusively estimating the power consumption of individual applications using external measurements of a server’s aggregate power usage and without requiring direct access to the server’s operating system or applications. Our key insight is that, based on an analysis of production traces, the power characteristics of datacenter workloads, e.g., low variability, low magnitude, and high periodicity, are highly amenable to disaggregation of a server’s total power consumption into application-specific values. WattScope adapts and extends a machine learning-based technique for disaggregating building power and applies it to server- and rack-level power meter measurements that are already available in data centers. We evaluate WattScope’s accuracy on a production workload and show that it yields high accuracy, e.g., often 10% normalized mean absolute error, and is thus a potentially useful tool for datacenters in externally monitoring application-level power usage. 
    more » « less