skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures
Two-dimensional heterostructures composed of layers with slightly different lattice vectors exhibit new periodic structure known as moiré lattices, which, in turn, can support novel correlated and topological phenomena. Moreover, moiré superstructures can emerge from multiple misaligned moiré lattices or inhomogeneous strain distributions, offering additional degrees of freedom in tailoring electronic structure. High-resolution imaging of the moiré lattices and superstructures is critical for understanding the emerging physics. Here, we report the imaging of moiré lattices and superstructures in graphene-based samples under ambient conditions using an ultrahigh-resolution implementation of scanning microwave impedance microscopy. Although the probe tip has a gross radius of ~100 nm, spatial resolution better than 5 nm is achieved, which allows direct visualization of the structural details in moiré lattices and the composite super-moiré. We also demonstrate artificial synthesis of novel superstructures, including the Kagome moiré arising from the interplay between different layers.  more » « less
Award ID(s):
1807233
NSF-PAR ID:
10294449
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
50
ISSN:
2375-2548
Page Range / eLocation ID:
eabd1919
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN; rotations between the two lattices, as is the case for twisted bilayer graphene; and strains between two identical layers in a bilayer. Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN, collective electronic phases in twisted bilayers and twisted double bilayers, and trapping of excitons in the moiré potential. An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials. 
    more » « less
  2. Abstract

    Moiré lattices formed in twisted van der Waals bilayers provide a unique, tunable platform to realize coupled electron or exciton lattices unavailable before. While twist angle between the bilayer has been shown to be a critical parameter in engineering the moiré potential and enabling novel phenomena in electronic moiré systems, a systematic experimental study as a function of twist angle is still missing. Here we show that not only are moiré excitons robust in bilayers of even large twist angles, but also properties of the moiré excitons are dependant on, and controllable by, the moiré reciprocal lattice period via twist-angle tuning. From the twist-angle dependence, we furthermore obtain the effective mass of the interlayer excitons and the electron inter-layer tunneling strength, which are difficult to measure experimentally otherwise. These findings pave the way for understanding and engineering rich moiré-lattice induced phenomena in angle-twisted semiconductor van der Waals heterostructures.

     
    more » « less
  3. Twistronics has been studied for manipulating electronic properties through a twist angle in the formed moiré superlattices of two dimensional layer materials. In this paper, we study twistoptics for manipulating optical properties in twisted moiré photonic patterns without physical rotations. We describe a theoretic approach for the formation of single-layer twisted photonic pattern in square and triangular lattices through an interference of two sets of laser beams arranged in two cone geometries. The moiré period and the size of unit super-cell of moiré patterns are related to the twist angle that is calculated from the wavevector ratio of laser beams. The bright and dark regions in moiré photonic pattern in triangular lattices are reversible. We simulate E-field intensities and their cavity quality factors for resonance modes in moiré photonic pattern in square lattices. Due to the bandgap dislocation between the bright and dark regions, the resonance modes with very high quality-factors appears near bandgap edges for the moiré photonic pattern with a twist angle of 9.5 degrees. At the low frequency range, the resonance modes can be explained as Mie resonances. The cavity quality factor decreases for resonance modes when the twist angle is increased to 22.6 degrees.

     
    more » « less
  4. Studies of moiré systems have explained the effect of superlattice modulations on their properties, demonstrating new correlated phases. However, most experimental studies have focused on a few layers in two-dimensional systems. Extending twistronics to three dimensions, in which the twist extends into the third dimension, remains underexplored because of the challenges associated with the manual stacking of layers. Here we study three-dimensional twistronics using a self-assembled twisted spiral superlattice of multilayered WS2. Our findings show an opto-twistronic Hall effect driven by structural chirality and coherence length, modulated by the moiré potential of the spiral superlattice. This is an experimental manifestation of the noncommutative geometry of the system. We observe enhanced light–matter interactions and an altered dependence of the Hall coefficient on photon momentum. Our model suggests contributions from higher-order quantum geometric quantities to this observation, providing opportunities for designing quantum-materials-based optoelectronic lattices with large nonlinearities. 
    more » « less
  5. Abstract

    Transition metal dichalcogenide (TMDC) moiré superlattices, owing to the moiré flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2trilayer moiré superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2valence moiré flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2layers share one hole laterally confined in one moiré unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moiré system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions.

     
    more » « less