Close contacts between individuals provide opportunities for the transmission of diseases, including COVID-19. While individuals take part in many different types of interactions, including those with classmates, co-workers and household members, it is the conglomeration of all of these interactions that produces the complex social contact network interconnecting individuals across the population. Thus, while an individual might decide their own risk tolerance in response to a threat of infection, the consequences of such decisions are rarely so confined, propagating far beyond any one person. We assess the effect of different population-level risk-tolerance regimes, population structure in the form of age and household-size distributions, and different interaction types on epidemic spread in plausible human contact networks to gain insight into how contact network structure affects pathogen spread through a population. In particular, we find that behavioural changes by vulnerable individuals in isolation are insufficient to reduce those individuals’ infection risk and that population structure can have varied and counteracting effects on epidemic outcomes. The relative impact of each interaction type was contingent on assumptions underlying contact network construction, stressing the importance of empirical validation. Taken together, these results promote a nuanced understanding of disease spread on contact networks, with implications for public health strategies.
more »
« less
Learning socio-organizational network structure in buildings with ambient sensing data
Impact Statement The structure of social and organizational relationships in commercial building workplaces is a key component of work processes. Understanding this structure—typically described as a network of relational ties—can help designers of workspaces and managers of workplaces make decisions that promote the success of organizations. These networks are complex, and as a result, our traditional means of measuring them are time and cost intensive. In this paper, we present a novel method, the Interaction Model, for learning these network structures automatically through sensing data. When we compare the learned network to network data obtained through a survey, we find statistically significant correlation, demonstrating the success of our method. Two key strengths of our proposed method are, first, that it uncovers network patterns quickly, requiring just 10 weeks of data, and, second, that it is interpretable, relying on intuitive opportunities for social interaction. Data-driven inference of the structure of human systems within our built environment will enable the design and operation of engineered built spaces that promote our human-centered objectives.
more »
« less
- PAR ID:
- 10294630
- Date Published:
- Journal Name:
- Data-Centric Engineering
- Volume:
- 1
- ISSN:
- 2632-6736
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Close contacts between individuals provide opportunities for the transmission of diseases, including COVID-19. While individuals take part in many different types of interactions, including those with classmates, co-workers and household members, it is the conglomeration of all of these interactions that produces the complex social contact network interconnecting individuals across the population. Thus, while an individual might decide their own risk tolerance in response to a threat of infection, the consequences of such decisions are rarely so confined, propagating far beyond any one person. We assess the effect of different population-level risk-tolerance regimes, population structure in the form of age and household-size distributions, and different interaction types on epidemic spread in plausible human contact networks to gain insight into how contact network structure affects pathogen spread through a population. In particular, we find that behavioural changes by vulnerable individuals in isolation are insufficient to reduce those individuals’ infection risk and that population structure can have varied and counteracting effects on epidemic outcomes. The relative impact of each interaction type was contingent on assumptions underlying contact network construction, stressing the importance of empirical validation. Taken together, these results promote a nuanced understanding of disease spread on contact networks, with implications for public health strategies.more » « less
-
Technologies in the workplace have been a major focus of CSCW, including studies that investigate technologies for collaborative work, explore new work environments, and address the importance of political and organizational aspects of technologies in workplaces. Emerging technologies, such as AI and robotics, have been deployed in various workplaces, and their proliferation is rapidly expanding. These technologies have not only changed the nature of work but also reinforced power and social dynamics within workplaces, requiring us to rethink the legitimate relationship between emerging technologies and human workers. It will be critical to the development of equitable future work arrangements to identify how these emerging technologies will develop relationships with human workers who have limited power and voice in their workplaces. How can these emerging technologies develop mutually beneficial partnerships with human workers? In this one-day workshop, we seek to illustrate the meaning of human-machine partnerships (HMP) by highlighting that how we define HMP may shape the design of future robots at work. By incorporating interdisciplinary perspectives, we aim to develop a taxonomy of HMP by which we can broaden our relationship with embodied agents but also evaluate and reconsider existing theoretical, methodological, and epistemological challenges in HMP research.more » « less
-
Nonverbal interactions are a key component of human communication. Since robots have become significant by trying to get close to human beings, it is important that they follow social rules governing the use of space. Prior research has conceptualized personal space as physical zones which are based on static distances. This work examined how preferred interaction distance can change given different interaction scenarios. We conducted a user study using three different robot heights. We also examined the difference in preferred interaction distance when a robot approaches a human and, conversely, when a human approaches a robot. Factors included in quantitative analysis are the participants' gender, robot's height, and method of approach. Subjective measures included human comfort and perceived safety. The results obtained through this study shows that robot height, participant gender and method of approach were significant factors influencing measured proxemic zones and accordingly participant comfort. Subjective data showed that experiment respondents regarded robots in a more favorable light following their participation in this study. Furthermore, the NAO was perceived most positively by respondents according to various metrics and the PR2 Tall, most negatively.more » « less
-
The increasing deployment of robots alongside humans necessitates sophisticated communication and motion planning to ensure safety and task achievability in social navigation scenarios. Existing methods often rely heavily on historical data and extensive expert hand-coding, which limits their scalability and generalizability. This paper introduces a novel framework that models social navigation as a Markov Decision Process (MDP), utilizing Conditional Abstraction Trees (CATs) to learn dynamic abstract world representations and policies that focus on critical aspects of interaction. In the offline phase, the framework operates within a simulator, while in the online phase, it deploys the learned representations and policies in real-world scenarios for ongoing refinement and adaptation. Integral to our approach is a Dynamic Bayesian Network (DBN) based human sensor and belief model that accounts for humans’ imperfect perception to enhance the prediction of human motion. We evaluated our method through extensive simulations and user studies involving physical experiments, demonstrating its effectiveness in managing critical interactions and ensuring safety and task completion across various scenarios.more » « less
An official website of the United States government

