skip to main content


Title: Reaching movements are automatically redirected to nearby options during target split
Motor behavior often occurs in environments with multiple goal options that can vary during the ongoing action. We explored this situation by requiring subjects to select between different target options during an ongoing reach. During split trials the original target was replaced with a left and a right flanking target, and participants had to select between them. This contrasted with the standard jump trials, where the original target would be replaced with a single flanking target, left or right. When participants were instructed to follow their natural tendency, they all tended to select the split target nearest the original. The near-target preference was more prominent with increased spatial disparity between the options and when participants could preview the potential options. Moreover, explicit instruction to obtain the “far” target during split trials resulted many errors compared with a “near” instruction, ~50% vs. ~15%. Online reaction times to target change were delayed in split trials compared with jump trials, ~200 ms vs. ~150 ms, but also highly automatic. Trials in which the instructed far target was correctly obtained were delayed by a further ~50 ms, unlike those in which the near target was incorrectly obtained. We also observed nonspecific responses from arm muscles at the jump trial latency during split trials. Taken together, our results indicate that online selection of reach targets is automatically linked to the spatial distribution of the options, though at greater delays than redirecting to a single target. NEW & NOTEWORTHY This work demonstrates that target selection during an ongoing reach is automatically linked to the option nearest a voided target. Online reaction times for two options are longer than redirection to a single option. Attempts to override the near-target tendency result in a high number of errors at the normal delay and further delays when the attempt is successful.  more » « less
Award ID(s):
1814846
NSF-PAR ID:
10294748
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Neurophysiology
Volume:
124
Issue:
4
ISSN:
0022-3077
Page Range / eLocation ID:
1013 to 1028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Introduction Split-belt treadmill training has been used to assist with gait rehabilitation following stroke. This method modifies a patient’s step length asymmetry by adjusting left and right tread speeds individually during training. However, current split-belt training approaches pay little attention to the individuality of patients by applying set tread speed ratios (e.g., 2:1 or 3:1). This generalization results in unpredictable step length adjustments between the legs. To customize the training, this study explores the capabilities of a live feedback system that modulates split-belt tread speeds based on real-time step length asymmetry. Materials and methods Fourteen healthy individuals participated in two 1.5-h gait training sessions scheduled 1 week apart. They were asked to walk on the Computer Assisted Rehabilitation Environment (CAREN) split-belt treadmill system with a boot on one foot to impose asymmetrical gait patterns. Each training session consisted of a 3-min baseline, 10-min baseline with boot, 10-min feedback with boot (6% asymmetry exaggeration in the first session and personalized in the second), 5-min post feedback with boot, and 3-min post feedback without boot. A proportional-integral (PI) controller was used to maintain a specified step-length asymmetry by changing the tread speed ratios during the 10-min feedback period. After the first session, a linear model between baseline asymmetry exaggeration and post-intervention asymmetry improvement was utilized to develop a relationship between target exaggeration and target post-intervention asymmetry. In the second session, this model predicted a necessary target asymmetry exaggeration to replace the original 6%. This prediction was intended to result in a highly symmetric post-intervention step length. Results and discussion Eleven out of 14 participants (78.6%) developed a successful relationship between asymmetry exaggeration and decreased asymmetry in the post-intervention period of the first session. Seven out of the 11 participants (63.6%) in this successful correlation group had second session post-intervention asymmetries of < 3.5%. Conclusions The use of a PI controller to modulate split-belt tread speeds demonstrated itself to be a viable method for individualizing split-belt treadmill training. 
    more » « less
  2. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  3. Abstract

    The current research investigates how people decide which of two options produces a better reward by repeatedly sampling from the options. In particular, it investigates the roles of two features of search, optional stopping and switch rate, on participants' final judgments of which option is better. First, in two studies, we found evidence for a new optional stopping effect; when participants stopped sampling right after experiencing a rare outcome, they made decisions as if they overweighted the rare outcome. Second, we investigated an effect proposed by Hills and Hertwig (2010) that people who frequently switch between options when sampling are more likely to make decisions consistent with underweighting rare outcomes. We conducted a theoretical analysis examining how switch rate can influence underweighting and how the type of decision problem moderates this effect. Informed by the theoretical analysis, we conducted four studies designed to test this effect with high power. None of the studies produced significant effects of switch rate. Lastly, the studies replicated a prior finding that optional stopping and switch rate are negatively correlated. In sum, this research elaborates a fuller understanding of the relation between search strategies (switch rate and optional stopping) on how people decide which option is better and their tendency to overweight versus underweight rare outcomes.

     
    more » « less
  4. Transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) has been shown to enhance divergent and convergent creative thinking. Yet, how stimulation impacts creative performance over time, and what cognitive mechanisms underlie any such enhancement, remain largely unanswered questions. In the present research, we aimed to (1) verify the impact of DLPFC tDCS on both convergent and divergent thinking, and further investigated (2) the temporal dynamics of divergent thinking, focusing on the serial order effect (i.e., the tendency for ideas to become more original and less frequent over time), and (3) any role that cognitive inhibition may play in mediating any effect of stimulation on creative thinking (considering the DLPFC’s involvement in driving inhibitory processes that are also relevant for creative thinking). In a within-subjects design, twenty-six participants received three types of cross-hemispheric tDCS stimulation over the DLPFC (left cathodal and right anodal, L-R+; left anodal and right cathodal, L+R-; and sham). Before stimulation, they completed a pre-flanker task measuring cognitive inhibition; during stimulation, they completed the Alternate Uses Task (AUT), Remote Associates Test (RAT), and post-flanker task. Results showed that, compared with the sham stimulation, originality of responses in the AUT was significantly enhanced in the L+R- condition, while no tDCS effect was observed for the RAT. Additionally, compared with the other stimulation conditions, we found a diminished serial order effect in the L+R- condition characterized by an accelerated production of more original ideas. Critically, the L+R- condition was accompanied by better performance on the flanker task. Our findings thus verify that L+R- tDCS over the DLPFC accelerates idea originality also providing tentative clues that inhibition may act as a cognitive mechanism underlying enhancements in divergent thinking resulting from frontal lobe neuromodulation. 
    more » « less
  5. In March 2020, the global COVID-19 pandemic forced universities across the United States to immediately stop face-to-face activities and transition to virtual instruction. While this transition was not easy for anyone, the shift to online learning was especially difficult for STEM courses, particularly engineering, which has a strong practical/laboratory component. Additionally, underrepresented students (URMs) in engineering experienced a range of difficulties during this transition. The purpose of this paper is to highlight underrepresented engineering students’ experiences as a result of COVID-19. In particular, we aim to highlight stories shared by participants who indicated a desire to share their experience with their instructor. In order to better understand these experiences, research participants were asked to share a story, using the novel data collection platform SenseMaker, based on the following prompt: Imagine you are chatting with a friend or family member about the evolving COVID-19 crisis. Tell them about something you have experienced recently as an engineering student. Conducting a SenseMaker study involves four iterative steps: 1) Initiation is the process of designing signifiers, testing, and deploying the instrument; 2) Story Collection is the process of collecting data through narratives; 3) Sense-making is the process of exploring and analyzing patterns of the collection of narratives; and 4) Response is the process of amplifying positive stories and dampening negative stories to nudge the system to an adjacent possible (Van der Merwe et al. 2019). Unlike traditional surveys or other qualitative data collection methods, SenseMaker encourages participants to think more critically about the stories they share by inviting them to make sense of their story using a series of triads and dyads. After completing their narrative, participants were asked a series of triadic, dyadic, and sentiment-based multiple-choice questions (MCQ) relevant to their story. For one MCQ, in particular, participants were required to answer was “If you could do so without fear of judgment or retaliation, who would you share this story with?” and were given the following options: 1) Family 2) Instructor 3) Peers 4) Prefer not to answer 5) Other. A third of the participants indicated that they would share their story with their instructor. Therefore, we further explored this particular question. Additionally, this paper aims to highlight this subset of students whose primary motivation for their actions were based on Necessity. High-level qualitative findings from the data show that students valued Grit and Perseverance, recent experiences influenced their Sense of Purpose, and their decisions were majorly made based on Intuition. Chi-squared tests showed that there were not any significant differences between race and the desire to share with their instructor, however, there were significant differences when factoring in gender suggesting that gender has a large impact on the complexity of navigating school during this time. Lastly, ~50% of participants reported feeling negative or extremely negative about their experiences, ~30% reported feeling neutral, and ~20% reported feeling positive or extremely positive about their experiences. In the study, a total of 500 micro-narratives from underrepresented engineering students were collected from June – July 2020. Undergraduate and graduate students were recruited for participation through the researchers’ personal networks, social media, and through organizations like NSBE. Participants had the option to indicate who is able to read their stories 1) Everyone 2) Researchers Only, or 3) No one. This work presents qualitative stories of those who granted permission for everyone to read. 
    more » « less