skip to main content


Title: A New Binary Programming Formulation and Social Choice Property for Kemeny Rank Aggregation
Rank aggregation is widely used in group decision making and many other applications, where it is of interest to consolidate heterogeneous ordered lists. Oftentimes, these rankings may involve a large number of alternatives, contain ties, and/or be incomplete, all of which complicate the use of robust aggregation methods. In particular, these characteristics have limited the applicability of the aggregation framework based on the Kemeny-Snell distance, which satisfies key social choice properties that have been shown to engender improved decisions. This work introduces a binary programming formulation for the generalized Kemeny rank aggregation problem—whose ranking inputs may be complete and incomplete, with and without ties. Moreover, it leverages the equivalence of two ranking aggregation problems, namely, that of minimizing the Kemeny-Snell distance and of maximizing the Kendall-τ correlation, to compare the newly introduced binary programming formulation to a modified version of an existing integer programming formulation associated with the Kendall-τ distance. The new formulation has fewer variables and constraints, which leads to faster solution times. Moreover, we develop a new social choice property, the nonstrict extended Condorcet criterion, which can be regarded as a natural extension of the well-known Condorcet criterion and the Extended Condorcet criterion. Unlike its parent properties, the new property is adequate for handling complete rankings with ties. The property is leveraged to develop a structural decomposition algorithm, through which certain large instances of the NP-hard Kemeny rank aggregation problem can be solved exactly in a practical amount of time. To test the practical implications of the new formulation and social choice property, we work with instances constructed from a probabilistic distribution and with benchmark instances from PrefLib, a library of preference data.  more » « less
Award ID(s):
1850355
NSF-PAR ID:
10295052
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Decision Analysis
ISSN:
1545-8490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In social choice, traditional Kemeny rank aggregation combines the preferences of voters, expressed as rankings, into a single consensus ranking without consideration for how this ranking may unfairly affect marginalized groups (i.e., racial or gender). Developing fair rank aggregation methods is critical due to their societal influence in applications prioritizing job applicants, funding proposals, and scheduling medical patients. In this work, we introduce the Fair Exposure Kemeny Aggregation Problem (FairExp-kap) for combining vast and diverse voter preferences into a single ranking that is not only a suitable consensus, but ensures opportunities are not withheld from marginalized groups. In formalizing FairExp-kap, we extend the fairness of exposure notion from information retrieval to the rank aggregation context and present a complimentary metric for voter preference representation. We design algorithms for solving FairExp-kap that explicitly account for position bias, a common ranking-based concern that end-users pay more attention to higher ranked candidates. epik solves FairExp-kap exactly by incorporating non-pairwise fairness of exposure into the pairwise Kemeny optimization; while the approximate epira is a candidate swapping algorithm, that guarantees ranked candidate fairness. Utilizing comprehensive synthetic simulations and six real-world datasets, we show the efficacy of our approach illustrating that we succeed in mitigating disparate group exposure unfairness in consensus rankings, while maximally representing voter preferences. 
    more » « less
  2. Rank aggregation has many applications in computer science, operations research, and group decision-making. This paper introduces lower bounds on the Kemeny aggregation problem when the input rankings are non-strict (with and without ties). It generalizes some of the existing lower bounds for strict rankings to the case of non-strict rankings, and it proposes shortcuts for reducing the run time of these techniques. More specifically, we use Condorcet criterion variations and the Branch & Cut method to accelerate the lower bounding process. 
    more » « less
  3. In its most traditional setting, the main concern of optimization theory is the search for optimal solutions for instances of a given computational problem. A recent trend of research in artificial intelligence, called solution diversity, has focused on the development of notions of optimality that may be more appropriate in settings where subjectivity is essential. The idea is that instead of aiming at the development of algorithms that output a single optimal solution, the goal is to investigate algorithms that output a small set of sufficiently good solutions that are sufficiently diverse from one another. In this way, the user has the opportunity to choose the solution that is most appropriate to the context at hand. It also displays the richness of the solution space.When combined with techniques from parameterized complexity theory, the paradigm of diversity of solutions offers a powerful algorithmic framework to address problems of practical relevance. In this work, we investigate the impact of this combination in the field of Kemeny Rank Aggregation, a well-studied class of problems lying in the intersection of order theory and social choice theory and also in the field of order theory itself. In particular, we show that KRA is fixed-parameter tractable with respect to natural parameters providing natural formalizations of the notions of diversity and of the notion of a sufficiently good solution. Our main results work both when considering the traditional setting of aggregation over linearly ordered votes, and in the more general setting where votes are partially ordered.< 
    more » « less
  4. The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms. 
    more » « less
  5. The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms. 
    more » « less