Abstract Coastal deltaic aquifers are vulnerable to degradation from seawater intrusion, geogenic and anthropogenic contamination, and groundwater abstraction. The distribution and transport of contaminants are highly dependent on the subsurface sedimentary architecture, such as the presence of channelized features that preferentially conduct flow. Surface deposition changes in response to sea‐level rise (SLR) and sediment supply, but it remains unclear how these surface changes affect the distribution and transport of groundwater solutes in aquifers. Here, we explore the influence of SLR and sediment supply on aquifer heterogeneity and resulting effects on contaminant transport. We use realizations of subsurface heterogeneity generated by a process‐based numerical model, DeltaRCM, which simulates the evolution of a deltaic aquifer with different input sand fractions and rates of SLR. We simulate groundwater flow and solute transport through these deposits in three contamination scenarios: (a) vertical transport from widespread contamination at the land surface, (b) vertical transport from river water infiltration, and (c) lateral seawater intrusion. The simulations show that the vulnerability of deltaic aquifers to seawater intrusion correlates to sand fraction, while vertical transport of contaminants, such as widespread shallow contamination and river water infiltration, is influenced by channel stacking patterns. This analysis provides new insights into the connection between the depositional system properties and vulnerability to different modes of groundwater contamination. It also illustrates how vulnerability may vary locally within a delta due to depositional differences. Results suggest that groundwater management strategies may be improved by considering surface features, location within the delta, and the external forcings during aquifer deposition. 
                        more » 
                        « less   
                    
                            
                            Assessing Water Literacy: Undergraduate Student Conceptions of Groundwater and Surface Water Flow
                        
                    
    
            Given the importance of fresh water, we investigated undergraduate students’ understanding of water flow and its consequences. We probed introductory geology students’ pre-instruction knowledge using a classroom management system at two large research-intensive universities. Open-ended clicker questions, where students click directly on diagrams using their smart device (e.g., cell phone, tablet) to respond, probed students’ predictions about: (1) groundwater movement and (2) velocity and erosion in a river channel. Approximately one-third of students correctly identified groundwater flow as having lateral and vertical components; however, the same number of students identified only vertical components to flow despite the diagram depicting enough topographic gradient for lateral flow. For rivers depicted as having a straight channel, students correctly identified zones of high velocity. However, for curved river channels, students incorrectly identified the inside of the bend as the location of greatest erosion and highest velocity. Systematic errors suggest that students have mental models of water flow that are not consistent with fluid dynamics. The use of students’ open-ended clicks to reveal common errors provided an efficient tool to identify conceptual challenges associated with the complex spatial and temporal processes that govern water movement in the Earth system. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10295403
- Date Published:
- Journal Name:
- Water
- Volume:
- 13
- Issue:
- 5
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 622
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Bank erosion commonly occurs in alluvial rivers, shaping landscapes and riparian habitats and impacting water quality and infrastructure. Several models have been proposed that link shear stresses to bank erosion. However, data to test these hypotheses for characteristic geometries of meandering channels are sparse and technically challenging to acquire. Here we present results from a controlled experiment in a naturalistic channel to isolate the relationships between turbulent flow and nascent bank erosion. We ran the experiments at the Outdoor StreamLab (St Anthony Falls Laboratory, University of Minnesota) and gathered high-precision, contemporaneous measurements of the turbulent flow field and topography near a standardized, erodible bank at five locations along a single meander. The measurements show that the rate of bank erosion varied both along the channel and vertically and, local bank erosion was not correlated with any single hydrodynamic parameter. Upstream of the meander apex, erosion correlated with the near-bank time-averaged streamwise velocity magnitude while downstream of the apex, bank erosion correlated more strongly with near-bank turbulence parameters and depth. These results support field measurements that suggest that fluid shear contributions to outer bank erosion reflect multiple components of turbulent flow structure in river meanders.more » « less
- 
            Abstract Several studies have focused on the importance of river bathymetry (channel geometry) in hydrodynamic routing along individual reaches. However, its effect on other watershed processes such as infiltration and surface water (SW)‐groundwater (GW) interactions has not been explored across large river networks. Surface and sbsurface processes are interdependent, therefore, errors due to inaccurate representation of one watershed process can cascade across other hydraulic or hydrologic processes. This study hypothesizes that accurate bathymetric representation is not only essential for simulating channel hydrodynamics but also affects subsurface processes by impacting SW‐GW interactions. Moreover, quantifying the effect of bathymetry on surface and subsurface hydrological processes across a river network can facilitate an improved understanding of how bathymetric characteristics affect these processes across large spatial domains. The study tests this hypothesis by developing physically based distributed models capable of bidirectional coupling (SW‐GW) with four configurations with progressively reduced levels of bathymetric representation. A comparison of hydrologic and hydrodynamic outputs shows that changes in channel geometry across the four configurations has a considerable effect on infiltration, lateral seepage, and location of water table across the entire river network. For example, when using bathymetry with inaccurate channel conveyance capacity but accurate channel depth, peak lateral seepage rate exhibited 58% error. The results from this study provide insights into the level of bathymetric detail required for accurately simulating flooding‐related physical processes while also highlighting potential issues with ignoring bathymetry across lower order streams such as spurious backwater flow, inaccurate water table elevations, and incorrect inundation extents.more » « less
- 
            Abstract Timing and completeness of freeze‐up on northern rivers impact winter travel and indicate responses to climate change. Open‐water zones (OWZs) within ice‐covered rivers are hazardous and may be increasing in extent and persistence. To better understand the distribution, variability, and mechanisms of OWZs, we selected nine reaches totaling 380 river‐km for remote sensing analysis and field studies in western Alaska. We initially identified 48 OWZs from November 2022 optical imagery, inventoried their persistence into late winter and interannual consistency over previous years, and at a subset measured ice thickness, water depth and velocity, and physicochemistry. The most consistent locations of OWZ formation occurred below sharp bends and channel constrictions, whereas locations associated with river bars and eroding banks were more transient. Of 359 OWZs identified in early winter over 6 years, 8% persisted into late winter―all on the Yukon River mainstem. Although several OWZs were in locations where we anticipated groundwater influence, we found no field data indication of groundwater upwelling. Observations of jumble ice upstream of many OWZs led us to examine freeze‐up ice jam locations in optical imagery, which showed strong correspondence to downstream OWZs. We hypothesize that reaches downstream of ice jams are much slower to freeze‐over due to restricted ice transport and high turbulence caused by channel form and ice‐affected hydraulics. Future work should focus on evaluation of this and other competing hypothesis at both reach and river network scales to predict OWZ locations and occurrence relative to other processes affecting river freeze‐up in northern climates.more » « less
- 
            Abstract High‐resolution topography reveals that floodplains along meandering rivers in Indiana commonly contain intermittently flowing channel networks. We investigated how the presence of floodplain channels affects lateral surface‐water connectivity between a river and floodplain (specifically exchange flux and timescales of transport) as a function of flow stage in a low‐gradient river‐floodplain system. We constructed a two‐dimensional, surface‐water hydrodynamic model using Hydrologic Engineering Center's River Analysis System (HEC‐RAS) 2D along 32 km of floodplain (56 km along the river) of the East Fork White River near Seymour, Indiana, USA, using lidar elevation data and surveyed river bathymetry. The model was calibrated using land‐cover specific roughness to elevation‐discharge data from a U.S. Geological Survey gage and validated against high‐water marks, an aerial photo showing the spatial extent of floodplain inundation, and measured flow velocities. Using the model results, we analyzed the flow in the river, spatial patterns of inundation, flow pathways, river‐floodplain exchange, and water residence time on the floodplain. Our results highlight that bankfull flow is an oversimplified concept for explaining river‐floodplain connectivity because some stream banks are overtopped and major low‐lying floodplain channels are inundated roughly 19 days per year. As flow increased, inundation of floodplain channels at higher elevations dissected the floodplain, until the floodplain channels became fully inundated. Additionally, we found that river‐floodplain exchange was driven by bank height or channel orientation depending on flow conditions. We propose a conceptual model of river‐floodplain connectivity dynamics and developed metrics to analyze quantitatively complex river‐floodplain systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    