skip to main content


Title: Magnetohydrodynamic Turbulence in the Earth’s Magnetotail From Observations and Global MHD Simulations
Magnetohydrodynamic (MHD) turbulent flows are found in the solar wind, the magnetosheath and the magnetotail plasma sheet. In this paper, we review both observational and theoretical evidence for turbulent flow in the magnetotail. MHD simulations of the global magnetosphere for southward interplanetary magnetic field (IMF) exhibit nested vortices in the earthward outflow from magnetic reconnection that are consistent with turbulence. Similar simulations for northward IMF also exhibit enhanced vorticity consistent with turbulence. These result from Kelvin-Helmholtz (KH) instabilities. However, the turbulent flows association with reconnection fill much of the magnetotail while the turbulent flows associated with the KH instability are limited to a smaller region near the magnetopause. Analyzing turbulent flows in the magnetotail is difficult because of the limited extent of the tail and because the flows there are usually sub-magnetosonic. Observational analysis of turbulent flows in the magnetotail usually assume that the Taylor frozen-in-flow hypothesis is valid and compare power spectral density vs. frequency with spectral indices derived for fluid turbulence by Kolmogorov in 1941. Global simulations carried out for actual magnetospheric substorms in the tail enable the results of the simulations to be compared directly with observed power spectra. The agreement between the two techniques provides confidence that the plasma sheet plasma is actually turbulent. The MHD results also allow us to calculate the power vs. wave number; results that also support the idea that the tail is turbulent.  more » « less
Award ID(s):
2040330
NSF-PAR ID:
10295587
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
8
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    MESSENGER has observed a lot of dawn‐dusk asymmetries in Mercury's magnetotail, such as the asymmetries of the cross‐tail current sheet thickness and the occurrence of flux ropes, dipolarization events, and energetic electron injections. In order to obtain a global pictures of Mercury's magnetotail dynamics and the relationship between these asymmetries, we perform global simulations with the magnetohydrodynamics with embedded particle‐in‐cell (MHD‐EPIC) model, where Mercury's magnetotail region is covered by a PIC code. Our simulations show that the dawnside current sheet is thicker, the plasma density is larger, and the electron pressure is higher than the duskside. Under a strong interplanetary magnetic field driver, the simulated reconnection sites prefer the dawnside. We also found the dipolarization events and the planetward electron jets are moving dawnward while they are moving toward the planet, so that almost all dipolarization events and high‐speed plasma flows concentrate in the dawn sector. The simulation results are consistent with MESSENGER observations.

     
    more » « less
  2. Electrons in earth's magnetotail are energized significantly both in the form of heating and in the form of acceleration to non-thermal energies. While magnetic reconnection is considered to play an important role in this energization, it still remains unclear how electrons are energized and how energy is partitioned between thermal and non-thermal components. Here, we show, based on in situ observations by NASA's magnetospheric multiscale mission combined with multi-component spectral fitting methods, that the average electron energy [Formula: see text] (or equivalently temperature) is substantially higher when the locally averaged electric field magnitude [Formula: see text] is also higher. While this result is consistent with the classification of “plasma-sheet” and “tail-lobe” reconnection during which reconnection is considered to occur on closed and open magnetic field lines, respectively, it further suggests that a stochastic Fermi acceleration in 3D, reconnection-driven turbulence is essential for the production and confinement of energetic electrons in the reconnection region. The puzzle is that the non-thermal power-law component can be quite small even when the electric field is large and the bulk population is significantly heated. The fraction of non-thermal electron energies varies from sample to sample between ∼20% and ∼60%, regardless of the electric field magnitude. Interestingly, these values of non-thermal fractions are similar to those obtained for the above-the-looptop hard x-ray coronal sources for solar flares. 
    more » « less
  3. Magnetic reconnection is the key mechanism for energy release in solar eruptions, where the high-temperature emission is the primary diagnostic for investigating the plasma properties during the reconnection process. Non-thermal broadening of high-temperature lines has been observed in both the reconnection current sheet (CS) and flare loop-top regions by UV spectrometers, but its origin remains unclear. In this work, we use a recently developed three-dimensional magnetohydrodynamic (MHD) simulation to model magnetic reconnection in the standard solar flare geometry and reveal highly dynamic plasma flows in the reconnection regions. We calculate the synthetic profiles of the Fe XXI 1354 Å line observed by the Interface Region Imaging Spectrograph (IRIS) spacecraft by using parameters of the MHD model, including plasma density, temperature, and velocity. Our model shows that the turbulent bulk plasma flows in the CS and flare loop-top regions are responsible for the non-thermal broadening of the Fe XXI emission line. The modeled non-thermal velocity ranges from tens of km s −1 to more than two hundred km s −1 , which is consistent with the IRIS observations. Simulated 2D spectral line maps around the reconnection region also reveal highly dynamic downwflow structures where the high non-thermal velocity is large, which is consistent with the observations as well. 
    more » « less
  4. Abstract

    We present an analysis of the energy partitioning in the magnetotail during a substorm at 03:58:00 UT on 7 February 2009. The analysis employs a multiscale approach where we use a state from a global magnetohydrodynamics (MHD) model to spawn a kinetic particle‐in‐cell (PIC) simulation of a large portion of the tail. We directly investigate the energy fluxes resulting from magnetic reconnection. The kinetic run provides information on the additional processes absent in the MHD description. The ion bulk energy and enthalpy fluxes carry the greatest energy, but the Poynting flux and electron enthalpy flux also carry a significant portion. The other fluxes (e.g., heat flux) are relatively small but are especially important because they allow us to identify the extra processes present only in the kinetic description. The energy fluxes present in the MHD approximation (Poynting flux, enthalpy flux, and bulk energy flux) are quantitatively accurate, and the kinetic correction does not greatly alter the MHD picture. However, there are two unique effects resulting from the kinetic physics. First, the formation of a rarefaction of the plasma flow into the reconnection site leads to a progressive decline in time of the particle energy fluxes with respect to the Poynting flux. Second, we observe that the instabilities developing in the kinetic reconnection outflows form structures absent from the MHD description. These structures reveal themselves as fluctuations within the energy fluxes. Especially notable are regions of inverted heat flux, where the heat flux is in the opposite direction to the total energy and mass flow.

     
    more » « less
  5. Over three decades of in-situ observations illustrate that the Kelvin–Helmholtz (KH) instability driven by the sheared flow between the magnetosheath and magnetospheric plasma often occurs on the magnetopause of Earth and other planets under various interplanetary magnetic field (IMF) conditions. It has been well demonstrated that the KH instability plays an important role for energy, momentum, and mass transport during the solar-wind-magnetosphere coupling process. Particularly, the KH instability is an important mechanism to trigger secondary small scale (i.e., often kinetic-scale) physical processes, such as magnetic reconnection, kinetic Alfvén waves, ion-acoustic waves, and turbulence, providing the bridge for the coupling of cross scale physical processes. From the simulation perspective, to fully investigate the role of the KH instability on the cross-scale process requires a numerical modeling that can describe the physical scales from a few Earth radii to a few ion (even electron) inertial lengths in three dimensions, which is often computationally expensive. Thus, different simulation methods are required to explore physical processes on different length scales, and cross validate the physical processes which occur on the overlapping length scales. Test particle simulation provides such a bridge to connect the MHD scale to the kinetic scale. This study applies different test particle approaches and cross validates the different results against one another to investigate the behavior of different ion species (i.e., H+ and O+), which include particle distributions, mixing and heating. It shows that the ion transport rate is about 10 25  particles/s, and mixing diffusion coefficient is about 10 10  m 2  s −1 regardless of the ion species. Magnetic field lines change their topology via the magnetic reconnection process driven by the three-dimensional KH instability, connecting two flux tubes with different temperature, which eventually causes anisotropic temperature in the newly reconnected flux. 
    more » « less