skip to main content

Title: 4085 TL1 Team Approach to Predicting Short-term and Long-term Effects of Spinal Cord Stimulation
OBJECTIVES/GOALS: Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain. Technological advances have led to renewed optimism in the field, but mechanisms of action in the brain remain poorly understood. We hypothesize that SCS outcomes will be associated with changes in neural oscillations. METHODS/STUDY POPULATION: The goal of our team project is to test patients who receive SCS at 3 times points: baseline, at day 7 during the trial period, and day 180 after a permanent system has been implanted. At each time point participants will complete 10 minutes of eyes closed, resting electroencephalography (EEG). EEG will be collected with the ActiveTwo system, a 128-electrode cap, and a 256 channel AD box from BioSemi. Traditional machine learning methods such as support vector machine and more complex models including deep learning will be used to generate interpretable features within resting EEG signals. RESULTS/ANTICIPATED RESULTS: Through machine learning, we anticipate that SCS will have a significant effect on resting alpha and beta power in sensorimotor cortex. DISCUSSION/SIGNIFICANCE OF IMPACT: This collaborative project will further the application of machine learning in cognitive neuroscience and allow us to better understand how therapies for chronic pain alter resting brain activity.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Clinical and Translational Science
Page Range / eLocation ID:
120 to 120
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT IMPACT: Understanding how spinal cord stimulation works and who it works best for will improve clinical trial efficacy and prevent unnecessary surgeries. OBJECTIVES/GOALS: Spinal cord stimulation (SCS) is an intervention for chronic low back pain where standard interventions fail to provide relief. However, estimates suggest only 58% of patients achieve at least 50% reduction in their pain. There is no non-invasive method for predicting relief provided by SCS. We hypothesize neural activity in the brain can fill this gap. METHODS/STUDY POPULATION: We tested SCS patients at 3 times points: baseline (pre-surgery), at day 7 during the trial period (post-trial), and 6 months after a permanent system had been implanted. At each time point participants completed 10 minutes of eyes closed, resting electroencephalography (EEG) and self-reported their pain. EEG was collected with the ActiveTwo system and a 128-electrode cap. Patients were grouped based on the percentage change of their pain from baseline to the final visit using a median split (super responders > average responders). Spectral density powerbands were extracted from resting EEG to use as input features for machine learning analyses. We used support vector machines to predict response to SCS. RESULTS/ANTICIPATED RESULTS: Baseline and post-trial EEG data predicted SCS response at 6-months with 95.56% and 100% accuracy, respectively. The gamma band had the highest performance in differentiating responders. Post-trial EEG data best differentiated the groups with feature weighted dipoles being more highly localized in sensorimotor cortex. DISCUSSION/SIGNIFICANCE OF FINDINGS: Understanding how SCS works and who it works best for is the long-term objective of our collaborative research program. These data provide an important first step towards this goal. 
    more » « less
  2. Introduction: Back pain is one of the most common causes of pain in the United States. Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain (CBP). However, SCS decreases pain in only 58% of patients and relies on self-reported pain scores as outcome measures. An SCS trial is temporarily implanted for seven days and helps to determine if a permanent SCS is needed. Patients that have a >50% reduction in pain from the trial stimulator makes them eligible for permanent implantation. However, self-reported measures reveal little on how mechanisms in the brain are altered. Other measurements of pain intensity, onset, medication, disabilities, depression, and anxiety have been used with machine learning to predict outcomes with accuracies <70%. We aim to predict long-term SCS responders at 6-months using baseline resting EEG and machine learning. Materials and Methods: We obtained 10-minutes of resting electroencephalography (EEG) and pain questionnaires from nine participants with CBP at two time points: 1) pre-trial baseline. 2) Six months after SCS permanent implant surgery. Subjects were designated as high or moderate responders based on the amount of pain relief provided by the long-term (post six months) SCS, and pain scored on a scale of 0-10 with 0 being no pain and 10 intolerable. We used the resting EEG from baseline to predict long-term treatment outcome. Resting EEG data was fed through a pipeline for classification and to map dipole sources. EEG signals were preprocessed using the EEGLAB toolbox. Independent component analysis and dipole fitting were used to linearly unmix the signal and to map dipole sources from the brain. Spectral analysis was performed to obtain the frequency distribution of the signal. Each power band, delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz), as well as the entire spectrum (1-100 Hz), were used for classification. Furthermore, dipole sources were ranked based on classification feature weights to determine the significance of specific regions in the brain. We used support vector machines to predict pain outcomes. Results and Discussion: We found higher frequency powerbands provide overall classification performance of 88.89%. Differences in power are seen between moderate and high responders in both the frontal and parietal regions for theta, alpha, beta, and the entire spectrum (Fig.1). This can potentially be used to predict patient response to SCS. Conclusions: We found evidence of decreased power in theta, alpha, beta, and entire spectrum in the anterior regions of the parietal cortex and posterior regions of the frontal cortex between moderate and high responders, which can be used for predicting treatment outcomes in long-term pain relief from SCS. Long-term treatment outcome prediction using baseline EEG data has the potential to contribute to decision making in terms of permanent surgery, forgo trial periods, and improve clinical efficiency by beginning to understand the mechanism of action of SCS in the human brain. 
    more » « less
  3. Chronic pain patients lack at-home pain assessment and management tools. The existing chronic-pain mobile applications are either solely relying on self-report pain levels or restricted to formal clinical settings. Our app, abbreviated from an NSF-funded project entitled Novel Computational Methods for Continuous Objective Multimodal Pain Assessment Sensing System (COMPASS), is a multi-dimensional pain app that collects physiological signals to predict objective pain levels and trace daily at-home activities by incorporating a daily check-in section. We conducted a usability test with 33 healthy participants under pain conditions. The results provided initial support for the validity of the signals in predicting internalizing pain levels among the participants. With further development and testing, we believe the COMPASS app system has the potential to be used by both patients and clinicians as an additional tool to better assess and manage pain, especially for mobile healthcare applications.

    more » « less
  4. Pain relief on-demand Chronic pain is a debilitating condition for which there are no effective treatments. The primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) are involved in decoding pain components, and electrical stimulation of the prefrontal cortex (PFC) has been shown to exert analgesic effects. Here, Sun et al. developed a multiregion brain-machine interface (BMI) able to detect pain from electrical signals in S1 and ACC and provide on-demand PFC stimulation. The BMI was able to accurately detect and treat acute and chronic pain in rats; the analgesic effects were stable over time. The results suggest that BMI approaches might be effective for treating chronic pain of different etiologies. 
    more » « less
  5. Studying electroencephalography (EEG) in response to transcranial magnetic stimulation (TMS) is gaining popularity for investigating the dynamics of complex neural architecture in the brain. For example, the primary motor cortex (M1) executes voluntary movements by complex connections with other associated subnetworks. To understand these connections better, we analyzed EEG signal response to TMS at left M1 from schizophrenia patients and healthy controls and in contrast with resting state EEG recording. After removing artifacts from EEG, we conducted 2D to 3D sLORETA conversion, a well-established source localization method, for estimating signal strength of 68 source dipoles or cortical regions inside the brain. Next, we studied dynamic connectivity by computing time-evolving spatial coherence of 2278 (=68*(68-1)/2) pairs of cortical regions, with sliding window technique of 200ms window size and 20ms shift over 1sec long data. Pairs with consistent coherence (coherence>0.8 during 200+ sliding windows of patients and controls combined) were chosen for identifying stable networks. For example, we found that during the resting state, precuneus was steadily coherent with middle and superior temporal gyrus in the left hemisphere in both patient and controls. Their connectivity pattern over the sliding windows significantly differed between patients and controls (pvalue<0.05). Whereas for M1, the same was true for two other coherent pairs namely, superamarginal gyrus with lateral occipital gyrus in right hemisphere and medial orbitofrontal gyrus with fusiform in left hemisphere. The TMS-EEG dynamic connectivity results can help to differentiate patient and normal subjects and also help to better understand the brain architecture and mechanisms. 
    more » « less