Many recent works have shown substantial efficiency boosts from performing inference tasks on Internet of Things (IoT) nodes rather than merely transmitting raw sensor data. However, such tasks, e.g., convolutional neural networks (CNNs), are very compute intensive. They are therefore challenging to complete at sensing-matched latencies in ultra-low-power and energy-harvesting IoT nodes. ReRAM crossbar-based accelerators (RCAs) are an ideal candidate to perform the dominant multiplication-and-accumulation (MAC) operations in CNNs efficiently, but conventional, performance-oriented RCAs, while energy-efficient, are power hungry and ill-optimized for the intermittent and unstable power supply of energy-harvesting IoT nodes. This paper presents the ResiRCA architecture that integrates a new, lightweight, and configurable RCA suitable for energy harvesting environments as an opportunistically executing augmentation to a baseline sense-and-transmit battery-powered IoT node. To maximize ResiRCA throughput under different power levels, we develop the ResiSchedule approach for dynamic RCA reconfiguration. The proposed approach uses loop tiling-based computation decomposition, model duplication within the RCA, and inter-layer pipelining to reduce RCA activation thresholds and more closely track execution costs with dynamic power income. Experimental results show that ResiRCA together with ResiSchedule achieve average speedups and energy efficiency improvements of 8× and 14× respectively compared to a baseline RCA with intermittency-unaware scheduling.
Origin: Enabling On-Device Intelligence for Human Activity Recognition Using Energy Harvesting Wireless Sensor Networks
There is an increasing demand for performing machine learning tasks, such as human activity recognition (HAR) on emerging ultra-low-power internet of things (IoT) platforms. Recent works show substantial efficiency boosts from performing inference tasks directly on the IoT nodes rather than merely transmitting raw sensor data. However, the computation and power demands of deep neural network (DNN) based inference pose significant challenges when executed on the nodes of an energy-harvesting wireless sensor network (EH-WSN). Moreover, managing inferences requiring responses from multiple energy-harvesting nodes imposes challenges at the system level in addition to the constraints at each node. This paper presents a novel scheduling policy along with an adaptive ensemble learner to efficiently perform HAR on a distributed energy-harvesting body area network. Our proposed policy, Origin, strategically ensures efficient and accurate individual inference execution at each sensor node by using a novel activity-aware scheduling approach. It also leverages the continuous nature of human activity when coordinating and aggregating results from all the sensor nodes to improve final classification accuracy. Further, Origin proposes an adaptive ensemble learner to personalize the optimizations based on each individual user. Experimental results using two different HAR data-sets show Origin, while running on harvested energy, to be more »
- Award ID(s):
- 1822923
- Publication Date:
- NSF-PAR ID:
- 10296321
- Journal Name:
- 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE)
- Page Range or eLocation-ID:
- 1414 to 1419
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent research on HAR focuses on using smartphones due to their widespread use. However, this leads to inconvenient use, limited choice of sensors and inefficient use of resources, since smartphones are not designed for HAR. This paper presents the first HAR framework that can perform both online training and inference. The proposed framework starts with a novel technique that generates features using the fast Fourier and discrete wavelet transforms of a textile-based stretch sensor and accelerometer data. Using these features, we design a neural network classifier which is trained online using the policy gradient algorithm. Experiments on a low power IoT device (TI-CC2650 MCU) with nine users show 97.7% accuracy in identifying six activities and their transitions with less than 12.5 mW power consumption.
-
Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailingmore »
-
The concept of Industry 4.0 introduces the unification of industrial Internet-of-Things (IoT), cyber physical systems, and data-driven business modeling to improve production efficiency of the factories. To ensure high production efficiency, Industry 4.0 requires industrial IoT to be adaptable, scalable, real-time, and reliable. Recent successful industrial wireless standards such as WirelessHART appeared as a feasible approach for such industrial IoT. For reliable and real-time communication in highly unreliable environments, they adopt a high degree of redundancy. While a high degree of redundancy is crucial to real-time control, it causes a huge waste of energy, bandwidth, and time under a centralized approach and are therefore less suitable for scalability and handling network dynamics. To address these challenges, we propose DistributedHART—a distributed real-time scheduling system for WirelessHART networks. The essence of our approach is to adopt local (node-level) scheduling through a time window allocation among the nodes that allows each node to schedule its transmissions using a real-time scheduling policy locally and online. DistributedHART obviates the need of creating and disseminating a central global schedule in our approach, thereby significantly reducing resource usage and enhancing the scalability. To our knowledge, it is the first distributed real-time multi-channel scheduler for WirelessHART. We havemore »
-
This paper presents an energy-efficient classification framework that performs human activity recognition (HAR). Typically, HAR classification tasks require a computational platform that includes a processor and memory along with sensors and their interfaces, all of which consume significant power. The presented framework employs microelectromechanical systems (MEMS) based Continuous Time Recurrent Neural Network (CTRNN) to perform HAR tasks very efficiently. In a real physical implementation, we show that the MEMS-CTRNN nodes can perform computing while consuming power on a nano-watts scale compared to the micro-watts state-of-the-art hardware. We also confirm that this huge power reduction doesn't come at the expense of reduced performance by evaluating its accuracy to classify the highly cited human activity recognition dataset (HAPT). Our simulation results show that the HAR framework that consists of a training module, and a network of MEMS-based CTRNN nodes, provides HAR classification accuracy for the HAPT that is comparable to traditional CTRNN and other Recurrent Neural Network (RNN) implantations. For example, we show that the MEMS-based CTRNN model average accuracy for the worst-case scenario of not using pre-processing techniques, such as quantization, to classify 5 different activities is 77.94% compared to 78.48% using the traditional CTRNN.