Most real-world networks are incompletely observed. Algorithms that can accurately predict which links are missing can dramatically speed up network data collection and improve network model validation. Many algorithms now exist for predicting missing links, given a partially observed network, but it has remained unknown whether a single best predictor exists, how link predictability varies across methods and networks from different domains, and how close to optimality current methods are. We answer these questions by systematically evaluating 203 individual link predictor algorithms, representing three popular families of methods, applied to a large corpus of 550 structurally diverse networks from sixmore »
This content will become publicly available on June 25, 2022
A Reality-Conforming Approach for QoS Performance Analysis of AFDX in Cyber-Physical Avionics Systems
AFDX (Avionics Full Duplex Switched Ethernet) is developed to support mission-critical communications while providing deterministic Quality of Service (QoS) across cyber-physical avionics systems. Currently, AFDX utilizes FP/FIFO QoS mechanisms to guarantee its real-time performance. To analyze the real-time performance of avionic systems in their design processes, existing work analyzes the deterministic delay bound of AFDX using NC (Network Calculus). However, existing analytical work is based on an unrealistic assumption leading to assumed worst cases that may not be achievable in reality. In this paper, we present a family of algorithms that can search for realistic worst-case delay scenarios in both preemptive and non-preemptive situations. Then we integrate the proposed algorithms with NC and apply our approach to analyzing tandem AFDX networks. Our reality-conforming approach yields tighter delay bound estimations than the state of the art. When there are 100 virtual links in AFDX networks, our method can provide delay bounds more than 25% tighter than those calculated by the state of the art in our evaluation. Moreover, when using our reality-conforming method in the design process, it leads to 27.2% increase in the number of virtual links accommodated by the network in the tandem scenario.
- Publication Date:
- NSF-PAR ID:
- 10297125
- Journal Name:
- 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)
- Page Range or eLocation-ID:
- 1 to 6
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm formore »
-
Recent effort to test deep learning systems has produced an intuitive and compelling test criterion called neuron coverage (NC), which resembles the notion of traditional code coverage. NC measures the proportion of neurons activated in a neural network and it is implicitly assumed that increasing NC improves the quality of a test suite. In an attempt to automatically generate a test suite that increases NC, we design a novel diversity promoting regularizer that can be plugged into existing adversarial attack algorithms. We then assess whether such attempts to increase NC could generate a test suite that (1) detects adversarial attacksmore »
-
Applications in environmental monitoring, surveillance and patrolling typically require a network of mobile agents to collectively gain information regarding the state of a static or dynamical process evolving over a region. However, these networks of mobile agents also introduce various challenges, including intermittent observations of the dynamical process, loss of communication links due to mobility and packet drops, and the potential for malicious or faulty behavior by some of the agents. The main contribution of this paper is the development of resilient, fully-distributed, and provably correct state estimation algorithms that simultaneously account for each of the above considerations, and inmore »
-
The Lovász Local Lemma (LLL) is a cornerstone principle in the probabilistic method of combinatorics, and a seminal algorithm of Moser & Tardos (2010) provides an efficient randomized algorithm to implement it. This algorithm can be parallelized to give an algorithm that uses polynomially many processors and runs in O(log3 n) time, stemming from O(log n) adaptive computations of a maximal independent set (MIS). Chung et al. (2014) developed faster local and parallel algorithms, potentially running in time O (log^2 n), but these algorithms work under significantly more stringent conditions than the LLL. We give a new parallel algorithm thatmore »