Abstract Accurate and (near) real-time earthquake monitoring provides the spatial and temporal behaviors of earthquakes for understanding the nature of earthquakes, and also helps in regional seismic hazard assessments and mitigations. Because of the increase in both the quality and quantity of seismic data, an automated earthquake monitoring system is needed. Most of the traditional methods for detecting earthquake signals and picking phases are based on analyses of features in recordings of an individual earthquake and/or their differences from background noises. When seismicity is high, the seismograms are complicated, and, therefore, traditional analysis methods often fail. With the development of machine learning algorithms, earthquake signal detection and seismic phase picking can be more accurate using the features obtained from a large amount of earthquake recordings. We have developed an attention recurrent residual U-Net algorithm, and used data augmentation techniques to improve the accuracy of earthquake detection and seismic phase picking on complex seismograms that record multiple earthquakes. The use of probability functions of P and S arrivals and potential P and S arrival pairs of earthquakes can increase the computational efficiency and accuracy of backprojection for earthquake monitoring in large areas. We applied our workflow to monitor the earthquake activity in southern California during the 2019 Ridgecrest sequence. The distribution of earthquakes determined by our method is consistent with that in the Southern California Earthquake Data Center (SCEDC) catalog. In addition, the number of earthquakes in our catalog is more than three times that of the SCEDC catalog. Our method identifies additional earthquakes that are close in origin times and/or locations, and are not included in the SCEDC catalog. Our algorithm avoids misidentification of seismic phases for earthquake location. In general, our algorithm can provide reliable earthquake monitoring on a large area, even during a high seismicity period.
more »
« less
ARRU Phase Picker: Attention Recurrent-Residual U-Net for Picking Seismic P - and S -Phase Arrivals
Abstract Seismograms are convolution results between seismic sources and the media that seismic waves propagate through, and, therefore, the primary observations for studying seismic source parameters and the Earth interior. The routine earthquake location and travel-time tomography rely on accurate seismic phase picks (e.g., P and S arrivals). As data increase, reliable automated seismic phase-picking methods are needed to analyze data and provide timely earthquake information. However, most traditional autopickers suffer from low signal-to-noise ratio and usually require additional efforts to tune hyperparameters for each case. In this study, we proposed a deep-learning approach that adapted soft attention gates (AGs) and recurrent-residual convolution units (RRCUs) into the backbone U-Net for seismic phase picking. The attention mechanism was implemented to suppress responses from waveforms irrelevant to seismic phases, and the cooperating RRCUs further enhanced temporal connections of seismograms at multiple scales. We used numerous earthquake recordings in Taiwan with diverse focal mechanisms, wide depth, and magnitude distributions, to train and test our model. Setting the picking errors within 0.1 s and predicted probability over 0.5, the AG with recurrent-residual convolution unit (ARRU) phase picker achieved the F1 score of 98.62% for P arrivals and 95.16% for S arrivals, and picking rates were 96.72% for P waves and 90.07% for S waves. The ARRU phase picker also shown a great generalization capability, when handling unseen data. When applied the model trained with Taiwan data to the southern California data, the ARRU phase picker shown no cognitive downgrade. Comparing with manual picks, the arrival times determined by the ARRU phase picker shown a higher consistency, which had been evaluated by a set of repeating earthquakes. The arrival picks with less human error could benefit studies, such as earthquake location and seismic tomography.
more »
« less
- Award ID(s):
- 1725729
- PAR ID:
- 10297784
- Date Published:
- Journal Name:
- Seismological Research Letters
- Volume:
- 92
- Issue:
- 4
- ISSN:
- 0895-0695
- Page Range / eLocation ID:
- 2410 to 2428
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Alaska Amphibious Community Seismic Experiment (AACSE) comprised 75 ocean-bottom seismometers and 30 land stations and covered about 650 km along the segment of the subduction zone that includes Kodiak Island, the Alaska Peninsula and the Shumagin Islands between May 2018 and September 2019. This unprecedented onshore-offshore dataset provided an opportunity to compile a greatly enhanced earthquake catalog for the region by both increasing the number of detected earthquakes and improving the accuracy of their source parameters. We use all available regional and AACSE campaign seismic data to compile an earthquake catalog for the region between Kodiak and the Shumagin Islands including the Alaska Peninsula (51° N–59° N, 148° W–163° W). We apply the same processing and reporting standards to additional picks and events as the Alaska Earthquake Center currently uses for compilation of the authoritative regional earthquake catalog. Over 7200 events (both newly detected and previously reported) have been processed with AACSE data. We added about 30% more events, 60% more phase picks, lowered the magnitude of completeness by about 0.2 on average across the region, and improved location errors. All data have been published in public data archives. In addition, we test the machine-learning earthquake detection and picking algorithm EarthquakeTransformer (EQT) on the AACSE seismic dataset, comparing EQT-determined P and S picks with the new catalog. EQT is entirely trained on land data, whereas AACSE is amphibious. Overall, EQT finds 59% of P and 63% of S arrivals in the catalog within 300 km epicentral distance. The percent of catalog picks detected by EQT varies inversely with earthquake epicentral distance, and EQT performs particularly poorly on data from earthquakes recorded by instruments in the outer rise.more » « less
-
SUMMARY Applications of machine learning in seismology have greatly improved our capability of detecting earthquakes in large seismic data archives. Most of these efforts have been focused on continental shallow earthquakes, but here we introduce an integrated deep-learning-based workflow to detect deep earthquakes recorded by a temporary array of ocean-bottom seismographs (OBSs) and land-based stations in the Tonga subduction zone. We develop a new phase picker, PhaseNet-TF, to detect and pick P- and S-wave arrivals in the time–frequency domain. The frequency-domain information is critical for analysing OBS data, particularly the horizontal components, because they are contaminated by signals of ocean-bottom currents and other noise sources in certain frequency bands. PhaseNet-TF shows a much better performance in picking S waves at OBSs and land stations compared to its predecessor PhaseNet. The predicted phases are associated using an improved Gaussian Mixture Model Associator GaMMA-1D and then relocated with a double-difference package teletomoDD. We further enhance the model performance with a semi-supervised learning approach by iteratively refining labelled data and retraining PhaseNet-TF. This approach effectively suppresses false picks and significantly improves the detection of small earthquakes. The new catalogue of Tonga deep earthquakes contains more than 10 times more events compared to the reference catalogue that was analysed manually. This deep-learning-enhanced catalogue reveals Tonga seismicity in unprecedented detail, and better defines the lateral extent of the double-seismic zone at intermediate depths and the location of four large deep-focus earthquakes relative to background seismicity. It also offers new potential for deciphering deep earthquake mechanisms, refining tomographic models, and understanding of subduction processes.more » « less
-
Abstract Recent progresses in artificial intelligence and machine learning make it possible to automatically identify seismic phases from exponentially growing seismic data. Despite some exciting successes in automatic picking of the first P‐ and S‐wave arrivals, auto‐identification of later seismic phases such as the Moho‐reflected PmP waves remains a significant challenge in matching the performance of experienced analysts. The main difficulty of machine‐identifying PmP waves is that the identifiable PmP waves are rare, making the problem of identifying the PmP waves from a massive seismic database inherently unbalanced. In this work, by utilizing a high‐quality PmP data set (10,192 manual picks) in southern California, we develop PmPNet, a deep‐neural‐network‐based algorithm to automatically identify PmP waves efficiently; by doing so, we accelerate the process of identifying the PmP waves. PmPNet applies similar techniques in the machine learning community to address the unbalancement of PmP datasets. The architecture of PmPNet is a residual neural network (ResNet)‐autoencoder with additional predictor block, where encoder, decoder, and predictor are equipped with ResNet connection. We conduct systematic research with field data, concluding that PmPNet can efficiently achieve high precision and high recall simultaneously to automatically identify PmP waves from a massive seismic database. Applying the pre‐trained PmPNet to the seismic database from January 1990 to December 1999 in southern California, we obtain nearly twice more PmP picks than the original PmP data set, providing valuable data for other studies such as mapping the topography of the Moho discontinuity and imaging the lower crust structures of southern California.more » « less
-
ABSTRACT Rapid association of seismic phases and event location are crucial for real‐time seismic monitoring. We propose a new method, named rapid earthquake association and location (REAL), for associating seismic phases and locating seismic events rapidly, simultaneously, and automatically. REAL combines the advantages of both pick‐based and waveform‐based detection and location methods. It associates arrivals of different seismic phases and locates seismic events primarily through counting the number of P and S picks and secondarily from travel‐time residuals. A group of picks are associated with a particular earthquake if there are enough picks within the theoretical travel‐time windows. The location is determined to be at the grid point with the most picks, and if multiple locations have the same maximum number of picks, the grid point among them with smallest travel‐time residuals. We refine seismic locations using a least‐squares location method (VELEST) and a high‐precision relative location method (hypoDD). REAL can be used for rapid seismic characterization due to its computational efficiency. As an example application, we apply REAL to earthquakes in the 2016 central Apennines, Italy, earthquake sequence occurring during a five‐day period in October 2016, midway in time between the two largest earthquakes. We associate and locate more than three times as many events (3341) as are in Italy's National Institute of Geophysics and Volcanology routine catalog (862). The spatial distribution of these relocated earthquakes shows a similar but more concentrated pattern relative to the cataloged events. Our study demonstrates that it is possible to characterize seismicity automatically and quickly using REAL and seismic picks.more » « less
An official website of the United States government

