skip to main content

Title: Designing the Metaverse
The Metaverse, a term coined in science fiction, is now being discussed seriously as a new form of infra-structure. The Metaverse is intended to make possible thematically interconnected immersive experiences. In this paper, we conceptualize the Metaverse as a meta design space. Within this space, designers create var-ious interconnected design spaces. We highlight how the key dimensions of human experience (time, space, actors, and artifacts) each introduce tensions for making decisions in those design spaces, and we highlight the transitions between design spaces. This conceptual language opens up this novel and emergent phenomenon both to those wishing to design new disruptive technologies and those seeking to improve existing platform strategies. We conclude by highlighting how the Metaverse will not only comprise immersive virtual experiences but also transitions between physical and virtual experiences.
Authors:
; ; ;
Award ID(s):
2128906 2113906 1909803
Publication Date:
NSF-PAR ID:
10298099
Journal Name:
Proceedings of the 55th Hawaii International Conference on System Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. The Metaverse represents the next generation of the Internet that, at this instant in time, is still a concept. It is envisioned to provide interconnected experiences that are immersive and varied. This vision challenges both designers and users to understand its possible coordination architecture and develop strategies for participation. One way to understand the concept and affect its instantiation is to take a design science approach that articulates design principles that might guide the exploration of different architectures. We apply concepts related to platforms and business ecosystems as well as ideas about facilitating technologies including choreography and orchestration as ways of blending together experiences, providing transitions between virtual locations. We derive three design principles from an analysis of Metaverse scenarios: narrative composability, social assortativity, and path discoverability. Thinking through these aspects of design leads to a discussion about the tradeoffs that will face designers of the Metaverse.
  2. The contemporary understanding of gender continues to highlight the complexity and variety of gender identities beyond a binary dichotomy regarding one’s biological sex assigned at birth. The emergence and popularity of various online social spaces also makes the digital presentation of gender even more sophisticated. In this paper, we use non-cisgender as an umbrella term to describe diverse gender identities that do not match people’s sex assigned at birth, including Transgender, Genderfuid, and Non-binary.We especially explore non-cisgender individuals’ identity practices and their challenges in novel social Virtual Reality (VR) spaces where they can present, express, and experiment their identity in ways that traditional online social spaces cannot provide. We provide one of the first empirical evidence of how social VR platforms may introduce new and novel phenomena and practices of approaching diverse gender identities online. We also contribute to re-conceptualizing technology-supported identity practices by highlighting the role of (re)discovering the physical body online and informing the design of the emerging metaverse for supporting diverse gender identities in the future.
  3. Computer-mediated collaboration has long been a core research interest in CSCW and HCI. As online social spaces continue to evolve towards more immersive and higher fidelity experiences, more research is still needed to investigate how emerging novel technology may foster and support new and more nuanced forms and experiences of collaboration in virtual environments. Using 30 interviews, this paper focuses on what people may collaborate on and how they collaborate in social Virtual Reality (VR). We broaden current studies on computer-mediated collaboration by highlighting the importance of embodiment for co-presence and communication, replicating offline collaborative activities, and supporting the seamless interplay of work, play, and mundane experiences in everyday lives for experiencing and conceptualizing collaboration in emerging virtual environments. We also propose potential design implications that could further support everyday collaborative activities in social VR
  4. A solid understanding of electromagnetic (E&M) theory is key to the education of electrical engineering students. However, these concepts are notoriously challenging for students to learn, due to the difficulty in grasping abstract concepts such as the electric force as an invisible force that is acting at a distance, or how electromagnetic radiation is permeating and propagating in space. Building physical intuition to manipulate these abstractions requires means to visualize them in a three-dimensional space. This project involves the development of 3D visualizations of abstract E&M concepts in Virtual Reality (VR), in an immersive, exploratory, and engaging environment. VR provides the means of exploration, to construct visuals and manipulable objects to represent knowledge. This leads to a constructivist way of learning, in the sense that students are allowed to build their own knowledge from meaningful experiences. In addition, the VR labs replace the cost of hands-on labs, by recreating the experiments and experiences on Virtual Reality platforms. The development of the VR labs for E&M courses involves four distinct phases: (I) Lab Design, (II) Experience Design, (III) Software Development, and (IV) User Testing. During phase I, the learning goals and possible outcomes are clearly defined, to provide context for themore »VR laboratory experience, and to identify possible technical constraints pertaining to the specific laboratory exercise. During stage II, the environment (the world) the player (user) will experience is designed, along with the foundational elements, such as ways of navigation, key actions, and immersion elements. During stage III, the software is generated as part of the course projects for the Virtual Reality course taught in the Computer Science Department at the same university, or as part of independent research projects involving engineering students. This reflects the strong educational impact of this project, as it allows students to contribute to the educational experiences of their peers. During phase IV, the VR experiences are played by different types of audiences that fit the player type. The team collects feedback and if needed, implements changes. The pilot VR Lab, introduced as an additional instructional tool for the E&M course during the Fall 2019, engaged over 100 students in the program, where in addition to the regular lectures, students attended one hour per week in the E&M VR lab. Student competencies around conceptual understanding of electromagnetism topics are measured via formative and summative assessments. To evaluate the effectiveness of VR learning, each lab is followed by a 10-minute multiple-choice test, designed to measure conceptual understanding of the various topics, rather than the ability to simply manipulate equations. This paper discusses the implementation and the pedagogy of the Virtual Reality laboratory experiences to visualize concepts in E&M, with examples for specific labs, as well as challenges, and student feedback with the new approach. We will also discuss the integration of the 3D visualizations into lab exercises, and the design of the student assessment tools used to assess the knowledge gain when the VR technology is employed.« less
  5. Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly impor-tant role in the efficient delivery of real-time stream-processing applications (also referred to as augmented information services), such as industrial automation and metaverse experiences (e.g., extended reality, immersive gaming). While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast na-ture, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty con-trol theory to develop the first fully decentralized, throughput-and cost-optimal algorithm for multicast flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing network control policies.