Abstract. Accurate colon segmentation on abdominal CT scans is crucial for various clinical applications. In this work, we propose an accurate AQ1 approach to colon segmentation from abdomen CT scans. Our architecture incorporates 3D contextual information via sequential episodic training (SET). In each episode, we used two consecutive slices, in a CT scan, as support and query samples in addition to other slices that did not include colon regions as negative samples. Choosing consecutive slices is a proper assumption for support and query samples, as the anatomy of the body does not have abrupt changes. Unlike traditional few-shot segmentation (FSS) approaches, we use the episodic training strategy in a supervised manner. In addition, to improve the discriminability of the learned features of the model, an embedding space is developed using contrastive learning. To guide the contrastive learning process, we use AQ2 an initial labeling that is generated by a Markov random field (MRF)- based approach. Finally, in the inference phase, we first detect the rec tum, which can be accurately extracted using the MRF-based approach, and then apply the SET on the remaining slices. Experiments on our private dataset of 98 CT scans and a public dataset of 30 CT scans illustrate that the proposed FSS model achieves a remarkable validation dice coefficient (DC) of 97.3% (Jaccard index, JD 94. 5%) compared to the classical FSS approaches 82.1% (JD 70.3%). Our findings highlight the efficacy of sequential episodic training in accurate 3D medical imaging segmentation. The codes for the proposed models are available at https://github.com/Samir-Farag/ICPR2024.
more »
« less
Fully Automated Spleen Localization And Segmentation Using Machine Learning And 3D Active Contours
Automated segmentation of the spleen in CT volumes is difficult due to variations in size, shape, and position of the spleen within the abdominal cavity as well as similarity of intensity values among organs in the abdominal cavity. In this paper we present a method for automated localization and segmentation of the spleen within axial abdominal CT volumes using trained classification models, active contours, anatomical information, and adaptive features. The results show an average Dice score of 0.873 on patients experiencing various chest, abdominal, and pelvic traumas taken at different contrast phases.
more »
« less
- Award ID(s):
- 1500124
- PAR ID:
- 10298283
- Date Published:
- Journal Name:
- 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
- Page Range / eLocation ID:
- 53 to 56
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Purpose This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings. Methods The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e., support). Segmentation starts by detecting the rectum using a Markov Random Field-based algorithm. Then, supervised sequential episodic training is applied to the remaining slices, while contrastive learning is employed to enhance feature discriminability, thereby improving segmentation accuracy. Results The proposed method, evaluated on 98 abdominal scans of prepped patients, achieved a Dice coefficient of 97.3% and a polyp information preservation accuracy of 98.28%. Statistical analysis, including 95% confidence intervals, underscores the method’s robustness and reliability. Clinically, this high level of accuracy is vital for ensuring the preservation of critical polyp details, which are essential for accurate automatic diagnostic evaluation. The proposed method performs reliably in scenarios with limited annotated data. This is demonstrated by achieving a Dice coefficient of 97.15% when the model was trained on a smaller number of annotated CT scans (e.g., 10 scans) than the testing dataset (e.g., 88 scans). Conclusions The proposed sequential segmentation approach achieves promising results in colon segmentation. A key strength of the method is its ability to generalize effectively, even with limited annotated datasets—a common challenge in medical imaging.more » « less
-
null (Ed.)Positron emission tomography and computed tomography (PET-CT) plays a critically important role in modern cancer therapy. In this paper, we focus on automated tumor delineation on PET-CT image pairs. Inspired by co-segmentation model, we develop a novel 3D image co-matting technique making use of the inner-modality information of PET and CT for matting. The obtained co-matting results are then incorporated in the graph-cut based PET-CT co-segmentation framework. Our comparative experiments on 32 PET-CT scan pairs of lung cancer patients demonstrate that the proposed 3D image co-matting technique can significantly improve the quality of cost images for the co-segmentation, resulting in highly accurate tumor segmentation on both PET and CT scan pairs.more » « less
-
null (Ed.)Positron emission tomography and computed tomography (PET-CT) dual-modality imaging provides critical diagnostic information in modern cancer diagnosis and therapy. Automated accurate tumor delineation is essentially important in computer-assisted tumor reading and interpretation based on PET-CT. In this paper, we propose a novel approach for the segmentation of lung tumors that combines the powerful fully convolutional networks (FCN) based semantic segmentation framework (3D-UNet) and the graph cut based co-segmentation model. First, two separate deep UNets are trained on PET and CT, separately, to learn high level discriminative features to generate tumor/non-tumor masks and probability maps for PET and CT images. Then, the two probability maps on PET and CT are further simultaneously employed in a graph cut based co-segmentation model to produce the final tumor segmentation results. Comparative experiments on 32 PET-CT scans of lung cancer patients demonstrate the effectiveness of our method.more » « less
-
We present a novel algorithm that is able to generate deep synthetic COVID-19 pneumonia CT scan slices using a very small sample of positive training images in tandem with a larger number of normal images. This generative algorithm produces images of sufficient accuracy to enable a DNN classifier to achieve high classification accuracy using as few as 10 positive training slices (from 10 positive cases), which to the best of our knowledge is one order of magnitude fewer than the next closest published work at the time of writing. Deep learning with extremely small positive training volumes is a very difficult problem and has been an important topic during the COVID-19 pandemic, because for quite some time it was difficult to obtain large volumes of COVID-19-positive images for training. Algorithms that can learn to screen for diseases using few examples are an important area of research. Furthermore, algorithms to produce deep synthetic images with smaller data volumes have the added benefit of reducing the barriers of data sharing between healthcare institutions. We present the cycle-consistent segmentation-generative adversarial network (CCS-GAN). CCS-GAN combines style transfer with pulmonary segmentation and relevant transfer learning from negative images in order to create a larger volume of synthetic positive images for the purposes of improving diagnostic classification performance. The performance of a VGG-19 classifier plus CCS-GAN was trained using a small sample of positive image slices ranging from at most 50 down to as few as 10 COVID-19-positive CT scan images. CCS-GAN achieves high accuracy with few positive images and thereby greatly reduces the barrier of acquiring large training volumes in order to train a diagnostic classifier for COVID-19.more » « less
An official website of the United States government

