skip to main content

Title: Strengthening Low-resource Neural Machine Translation through Joint Learning: The Case of Farsi-Spanish [Strengthening Low-resource Neural Machine Translation through Joint Learning: The Case of Farsi-Spanish]
This paper describes a systematic study of an approach to Farsi-Spanish low-resource Neural Machine Translation (NMT) that leverages monolingual data for joint learning of forward and backward translation models. As is standard for NMT systems, the training process begins using two pre-trained translation models that are iteratively updated by decreasing translation costs. In each iteration, either translation model is used to translate monolingual texts from one language to another, to generate synthetic datasets for the other translation model. Two new translation models are then learned from bilingual data along with the synthetic texts. The key distinguishing feature between our approach and standard NMT is an iterative learning process that improves the performance of both translation models, simultaneously producing a higher-quality synthetic training dataset upon each iteration. Our empirical results demonstrate that this approach outperforms baselines.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 1: NLPinAI
Page Range / eLocation ID:
475 to 481
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Neural Machine Translation (NMT) performs training of a neural network employing an encoder-decoder architecture. However, the quality of the neural-based translations predominantly depends on the availability of a large amount of bilingual training dataset. In this paper, we explore the performance of translations predicted by attention-based NMT systems for Spanish to Persian low-resource language pairs. We analyze the errors of NMT systems that occur in the Persian language and provide an in-depth comparison of the performance of the system based on variations in sentence length and size of the training dataset. We evaluate our translation results using BLEU and human evaluation measures based on the adequacy, fluency, and overall rating. 
    more » « less
  2. null (Ed.)
    In this paper, we propose a useful optimization method for low-resource Neural Machine Translation (NMT) by investigating the effectiveness of multiple neural network optimization algorithms. Our results confirm that applying the proposed optimization method on English-Persian translation can exceed translation quality compared to the English-Persian Statistical Machine Translation (SMT) paradigm. 
    more » « less
  3. Noisy channel models have been especially effective in neural machine translation (NMT). However, recent approaches like "beam search and rerank" (BSR) incur significant computation overhead during inference, making real-world application infeasible. We aim to study if it is possible to build an amortized noisy channel NMT model such that when we do greedy decoding during inference, the translation accuracy matches that of BSR in terms of reward (based on the source-to-target log probability and the target-to-source log probability) and quality (based on BLEU and BLEURT). We attempt three approaches to train the new model: knowledge distillation, one-step-deviation imitation learning, and Q learning. The first approach obtains the noisy channel signal from a pseudo-corpus, and the latter two approaches aim to optimize toward a noisy-channel MT reward directly. For all three approaches, the generated translations fail to achieve rewards comparable to BSR, but the translation quality approximated by BLEU and BLEURT is similar to the quality of BSR-produced translations. Additionally, all three approaches speed up inference by 1-2 orders of magnitude. 
    more » « less
  4. Learning target side syntactic structure has been shown to improve Neural Machine Translation (NMT). However, incorporating syntax through latent variables introduces additional complexity in inference, as the models need to marginalize over the latent syntactic structures. To avoid this, models often resort to greedy search which only allows them to explore a limited portion of the latent space. In this work, we introduce a new latent variable model, LaSyn, that captures the co-dependence between syntax and semantics, while allowing for effective and efficient inference over the latent space. LaSyn decouples direct dependence between successive latent variables, which allows its decoder to exhaustively search through the latent syntactic choices, while keeping decoding speed proportional to the size of the latent variable vocabulary. We implement LaSyn by modifying a transformer-based NMT system and design a neural expectation maximization algorithm that we regularize with part-of-speech information as the latent sequences. Evaluations on four different MT tasks show that incorporating target side syntax with LaSyn improves both translation quality, and also provides an opportunity to improve diversity. 
    more » « less