skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Matching While Learning
We consider the problem faced by a service platform that needs to match limited supply with demand while learning the attributes of new users to match them better in the future. We introduce a benchmark model with heterogeneous workers (demand) and a limited supply of jobs that arrive over time. Job types are known to the platform, but worker types are unknown and must be learned by observing match outcomes. Workers depart after performing a certain number of jobs. The expected payoff from a match depends on the pair of types, and the goal is to maximize the steady-state rate of accumulation of payoff. Although we use terminology inspired by labor markets, our framework applies more broadly to platforms where a limited supply of heterogeneous products is matched to users over time. Our main contribution is a complete characterization of the structure of the optimal policy in the limit that each worker performs many jobs. The platform faces a tradeoff for each worker between myopically maximizing payoffs (exploitation) and learning the type of the worker (exploration). This creates a multitude of multiarmed bandit problems, one for each worker, coupled together by the constraint on availability of jobs of different types (capacity constraints). We find that the platform should estimate a shadow price for each job type and use the payoffs adjusted by these prices first to determine its learning goals and then for each worker (i) to balance learning with payoffs during the exploration phase and (ii) to myopically match after it has achieved its learning goals during the exploitation phase.  more » « less
Award ID(s):
1653477
PAR ID:
10299231
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Operations Research
Volume:
69
Issue:
2
ISSN:
0030-364X
Page Range / eLocation ID:
655 to 681
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The artificial intelligence (AI) industry has created new jobs that are essential to the real world deployment of intelligent systems. Part of the job focuses on labeling data for machine learning models or having workers complete tasks that AI alone cannot do. These workers are usually known as ‘crowd workers’—they are part of a large distributed crowd that is jointly (but separately) working on the tasks although they are often invisible to end-users, leading to workers often being paid below minimum wage and having limited career growth. In this chapter, we draw upon the field of human–computer interaction to provide research methods for studying and empowering crowd workers. We present our Computational Worker Leagues which enable workers to work towards their desired professional goals and also supply quantitative information about crowdsourcing markets. This chapter demonstrates the benefits of this approach and highlights important factors to consider when researching the experiences of crowd workers. 
    more » « less
  2. Abstract Immigrant day laborers routinely experience exploitative behaviors as part of their employment. These day laborers perceive the exploitation they experience in the context of their immigration histories and in the context of their long-term goals for better working and living conditions. Using mixed methods, over three data collection periods in 2016, 2019 and 2020, we analyze the work experiences of immigrant day laborers in Houston and Austin, Texas. We report how workers evaluate precarious jobs and respond to labor exploitation in an informal labor market. We also discuss data from a worker rights training intervention conducted through a city-sponsored worker center. We discuss the potential for worker centers to be a convening and remediation space for workers and employers. Worker centers offer a potential space for informal intervention into wage theft and work safety violations by regulating the hiring context where day laborers meet employers. 
    more » « less
  3. Motivated by a service platform, we study a two-sided network where heterogeneous demand (customers) and heterogeneous supply (workers) arrive randomly over time to get matched. Customers and workers arrive with a randomly sampled patience time (also known as reneging time in the literature) and are lost if forced to wait longer than that time to be matched. The system dynamics depend on the matching policy, which determines when to match a particular customer class with a particular worker class. Matches between classes use the head-of-line customer and worker from each class. Since customer and worker arrival processes can be very general counting processes, and the reneging times can be sampled from any finite mean distribution that is absolutely continuous, the state descriptor must track the age-in-system for every customer and worker waiting in order to be Markovian, as well as the time elapsed since the last arrival for every class. We develop a measure-valued fluid model that approximates the evolution of the discrete-event stochastic matching model and prove its solution is unique under a fixed matching policy. For a sequence of matching models, we establish a tightness result for the associated sequence of fluid-scaled state descriptors and show that any distributional limit point is a fluid model solution almost surely. When arrival rates are constant, we characterize the invariant states of the fluid model solution and show convergence to these invariant states as time becomes large. Finally, again when arrival rates are constant, we establish another tightness result for the sequence of fluid-scaled state descriptors distributed according to a stationary distribution and show that any subsequence converges to an invariant state. As a consequence, the fluid and time limits can be interchanged, which justifies regarding invariant states as first order approximations to stationary distributions. 
    more » « less
  4. Emerging on-demand service platforms (OSPs) have recently embraced teamwork as a strategy for stimulating workers’ productivity and mediating temporal supply and demand imbalances. This research investigates the team contest scheme design problem considering work schedules. Introducing teams on OSPs creates a hierarchical single-leader multi-follower game. The leader (platform) establishes rewards and intrateam revenue-sharing rules for distributing workers’ payoffs. Each follower (team) competes with others by coordinating the schedules of its team members to maximize the total expected utility. The concurrence of interteam competition and intrateam coordination causes dual effects, which are captured by an equilibrium analysis of the followers’ game. To align the platform’s interest with workers’ heterogeneous working-time preferences, we propose a profit-maximizing contest scheme consisting of a winner’s reward and time-varying payments. A novel algorithm that combines Bayesian optimization, duality, and a penalty method solves the optimal scheme in the nonconvex equilibrium-constrained problem. Our results indicate that teamwork is a useful strategy with limitations. Under the proposed scheme, team contest always benefits workers. Intrateam coordination helps teams strategically mitigate the negative externalities caused by overcompetition among workers. For the platform, the optimal scheme can direct teams’ schedules toward more profitable market equilibria when workers have inaccurate perceptions of the market. History: This paper has been accepted for the Service Science Special Issue on Innovation in Transportation-Enabled Urban Services. Funding: This work was supported by the National Science Foundation [Grant FW-HTF-P 2222806]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/serv.2023.0320 . 
    more » « less
  5. The Sia1 scheduler efficiently assigns heterogeneous deep learning (DL) cluster resources to elastic resource-adaptive jobs. Although some recent schedulers address one aspect or another (e.g., heterogeneity or resource-adaptivity), none addresses all and most scale poorly to large clusters and/or heavy workloads even without the full complexity of the combined scheduling problem. Sia introduces a new scheduling formulation that can scale to the search-space sizes and intentionally match jobs and their configurations to GPU types and counts, while adapting to changes in cluster load and job mix over time. Sia also introduces a low- profiling-overhead approach to bootstrapping (for each new job) throughput models used to evaluate possible resource assignments, and it is the first cluster scheduler to support elastic scaling of hybrid parallel jobs. Extensive evaluations show that Sia outperforms state-of- the-art schedulers. For example, even on relatively small 44- to 64-GPU clusters with a mix of three GPU types, Sia reduces average job completion time ( JCT) by 30–93%, 99th percentile JCT and makespan by 28–95%, and GPU hours used by 12– 55% for workloads derived from 3 real-world environments. Additional experiments demonstrate that Sia scales to at least 2000-GPU clusters, provides improved fairness, and is not over-sensitive to scheduler parameter settings. 
    more » « less