skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A preliminary assessment of olivine phenocrysts from the monogenetic basalt of the McCartys Flow, Zuni-Bandera Volcanic Field, New Mexico
Monogenetic small-volume basaltic volcanoes are the most abundant subaerial volcanic landforms on Earth but are some of the most poorly understood systems. Their short durations, small volumes, and lack of recurrence make monitoring and hazard assessment difficult. The Zuni-Bandera volcanic field in western New Mexico contains small-volume basaltic centers erupting tholeiitic to alkalic basalts. Evidence shows no correlation of magma composition with eruption age, location, or volumetric output, prompting questions about the influence of magma ascent rates, magma storage conditions, and mantle source characteristics on lava compositions. Here, we present olivine major and minor element mineral chemistry from the 3200-year-old McCartys Flow, the youngest tholeiite basalt in the volcanic field. Olivine displays four phenocryst types with unique textures and major and minor element compositions. Multiple olivine types co-exist at the thin section scale. Major and minor element diffusion at frozen melt–phenocryst interfaces was modeled, revealing magma residence times ranging from 3–9 months. Type 3 olivine phenocrysts require step function initial conditions and record diffusion re-equilibration followed by magma mixing. These profiles indicate the magma resided in the reservoir for 10–15 years and accumulated from multiple batches of mixed magmas less than 10 days before the eruption. Our results show that primitive magmas in small-volume monogenetic volcanoes have complex lithospheric magmatic histories and stored in magma bodies influenced by an open system to develop different local chemical environments.  more » « less
Award ID(s):
1828069
PAR ID:
10299500
Author(s) / Creator(s):
Editor(s):
Frey, Bonnie A.; Kelley, Shari A.; Zeigler, Kate E.; McLemore, Virginia T.; Goff, Fraser; Ulmer-Scholle, Dana S.
Date Published:
Journal Name:
New Mexico Geological Society 72nd Annual Fall Field Conference Guidebook
Page Range / eLocation ID:
141-152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recharges of magma underneath basaltic volcanoes can occur as precursory events prior to an eruption but are not always revealed in geophysical data streams or erupted lavas compositions. In contrast, phosphorus within primitive, Mg‐rich (Fo89‐90), olivine can preserve recharge information lost by the mixed melt. Evidence of rapid growth and dissolution are preserved only in phosphorus X‐ray intensity maps, which reveal that Mg‐rich olivine from eruptions occurring between 2008 and 2020 at Kīlauea Volcano (Hawaiʻi) experienced at least two episodes of magma intrusion. We develop numerical diffusion models that evaluate the fidelity of the Fe‐Mg compositional archive by quantifying three factors that influence Fo population distributions: (a) the frequency at which an Mg‐rich basaltic liquid (in equilibrium with Fo90olivine) intrudes the reservoir, (b) the pre‐existence of a polymodal distribution of olivine crystal sizes and their shapes (c) the effects of sectioning on apparent olivine core compositions. We find that most crystals lose their initial Mg‐rich composition if they are held at temperatures relevant to summit magma storage conditions (1,160–1,190°C) for more than 10 years. Thus, previous assertions that Mg‐rich olivine crystals at Kīlauea are scavenged from centuries‐old stored magmas are unrealistic. Our method permits critical evaluation of contrasting explanations of heterogeneous Fe‐Mg contents of olivine cargo: (a) different total durations of mush storage with partial diffusive erasure of compositional traits, or (b) coexistence of multiple chemically distinct magmas. Our approach provides general guidance for the conservative interpretation of temporal information preserved within olivine Fe‐Mg compositional archives. 
    more » « less
  2. The origin of gaps or zoning in the composition of erupted products is critical to understanding how sub-volcanic reservoirs operate. We characterize the compositionally zoned magma that produced the 2053 ± 50 cal. yr BP Paso Puyehue Tephra from the Antillanca Volcanic Complex in the Andean Southern Volcanic Zone (SVZ). The 3.7 km3 Paso Puyehue Tephra is zoned from dacite (69 wt% SiO2) lapilli and ash comprising the lowermost 80% of the deposit that abruptly transitions upward into basaltic andesite scoria (54 wt% SiO2) making up the remaining ~20%. Variations in whole-rock, matrix glass, and mineral compositions through the deposit allow us to estimate pre-eruptive magma storage conditions and to develop a model of how this magma body was generated. Our findings suggest that amphibole-bearing basaltic andesitic magma stored at ~8.0 ± 1.3 km depth fractionally crystallized and cooled from 1048 ± 1.1 to 811 ± 28.6 ◦C under highly oxidizing conditions to produce silicic a melt that upon extraction and rise, pooled at ~6.4 ± 1.2 km depth at temperatures as low as 810 ◦C before eruption. MELTS models suggest that crystallization of a basaltic andesite parent magma with 4 wt% dissolved H2O can produce the dacite under conditions predicted by mineral thermobarometers with phase compositions comparable to those measured in minerals. Pervasive normal zoning at the rims of plagioclase crystals—most pronounced at the transition between dacite and basaltic andesite, and compatible vs. incompatible trace element concentrations, suggest that magma mixing was limited and likely occurred at the interface between the dacitic and basaltic andesitic magmas during ascent within the conduit upon eruption. Compositionally bimodal tephras are increasingly recognized throughout the SVZ with several interpreted to reflect basaltic recharge and mixing into extant rhyolitic reservoirs. In further contrast to other SVZ rhyolitic products, e.g., from the nearby Cord´on Callue and Mocho Choshuenco volcanoes, the Paso Puyehue magma was highly oxidized. This may reflect enhanced delivery of H2O from the subducting plate into the mantle wedge, which in turn may facilitate efficient extraction and separation of buoyant, low-viscosity rhyolitic melt from crystal-rich basaltic andesitic parent magmas and the co-eruption of both end members. 
    more » « less
  3. Mocho-Choshuenco volcano (39.9°S, 72.0°W) produced ∼75 explosive eruptions following retreat of the >1.5-km-thick Patagonian Ice Sheet associated with the local Last Glacial Maximum (LGM, from 35 to 18 ka). Here, we extend this record of volcanic evolution to include pre- and syn-LGM lavas that erupted during the Pleistocene. We establish a long-term chronology of magmatic and volcanic evolution and evaluate the relationship between volcanism and loading/unloading of the Patagonian Ice Sheet via twenty-four 40Ar/39Ar and two 3He age determinations integrated with stratigraphy and whole-rock compositions of lava flows and glass compositions of tephra. Our findings reveal that the edifice is much younger than previously thought and preserves 106 km3 of eruptive products, of which 50% were emplaced immediately following the end of the penultimate glaciation and 20% after the end of the LGM. A period of volcanic inactivity between 37 and 26 ka, when glaciers expanded, was followed by the eruption of incompatible element-rich basaltic andesites. Several of these syn-LGM lavas dated between 26 and 16 ka, which crop out at 1500−1700 m above sea level, show ice contact features that are consistent with emplacement against a 1400- to 1600-m-thick Patagonian Ice Sheet. Small volume dacitic eruptions and two explosive rhyolitic eruptions dominate the volcanic output from 18 to 8 ka, when the Patagonian Ice Sheet began to retreat rapidly. We hypothesize that increased lithostatic loading as the Patagonian Ice Sheet grew prohibited dike propagation, thus stalling the ascent of magma, promoting growth of at least three discrete magma reservoirs, and enhancing minor crustal assimilation to generate incompatible element-rich basaltic andesitic to dacitic magmas that erupted between 26 and 17 ka. From an adjacent reservoir, incompatible element-poor dacites erupted from 17 to 12 ka. These lava flows were followed by the caldera-forming eruption at 11.5 ka of 5.3 km3 of rhyolite from a deeper reservoir atop which a silicic melt lens had formed and expanded. Subsequent eruptions of oxidized dacitic magmas from the Choshuenco cone from 11.5 to 8 ka were followed by andesitic to dacitic eruptions at the more southerly Mocho cone, as well as small flank vent eruptions of basaltic andesite at 2.5 and 0.5 ka. This complex history reflects a multi-reservoir plumbing system beneath Mocho-Choshuenco, which is characterized by depths of magma storage, oxidation states, and trace element compositions that vary over short periods of time (<2 k.y.). 
    more » « less
  4. Abstract Whole rock compositions at Buldir Volcano, western Aleutian arc, record a strong, continuous trend of iron depletion with decreasing MgO, classically interpreted as a calc-alkaline liquid line of descent. In contrast, olivine-hosted melt inclusions have higher total iron (FeO*) than whole rocks and show little change in FeO* with decreasing MgO. To investigate this discrepancy and determine the conditions required for strong iron depletion, we conducted oxygen fugacity (ƒO2) buffered, water-saturated crystallization experiments at 800 MPa and ƒO2 = QFM + 1.6 ± 0.4 (1$$\sigma$$) (where QFM refers to the quartz-fayalite-magnetite buffer) on a high-Al, basaltic starting material modeled after a Buldir lava. Experimental conditions were informed by olivine-hosted melt inclusions that record minimum entrapment pressures as high as 570 MPa, >6 wt % H2O, and ƒO2 of QFM + 1.4 (±0.2), making Buldir one of the most oxidized and wettest arc volcanoes documented globally. The experiments produce melts with Si-enrichment and Fe-depletion signatures characteristic of evolved, calc-alkaline magmas at the lowest MgO, although FeO* remains roughly constant over most of the experimental temperature range. Experiments saturate CrAl-spinel and olivine at 1160°C, followed by clinopyroxene and Al-spinel at 1085°C, hornblende at 1060°C, and, finally, plagioclase and magnetite between 1040°C and 960°C. Hornblende crystallization, not magnetite, generates the largest increase in SiO2 and largest decrease in FeO* in coexisting melts. Compositions of melt inclusions are consistent with experimental melts and reflect crystallization of a basaltic parent magma at high PH2O. In contrast, the whole rock compositional trends are influenced by magma mixing and phenocryst redistribution and accumulation. The crystallization experiments and natural liquids (melt inclusions and groundmass glass) from Buldir suggest that for an oxidized, hydrous primary basalt starting composition, significant Fe depletion from the melt will not occur until intermediate to late stages of magma crystallization (< ~4.5 wt % MgO). We conclude that the Buldir whole rock trend cannot be reproduced by crystallization at arc-relevant oxygen fugacities and is not a true liquid line of descent, warranting caution when interpreting volcanic trends globally. 
    more » « less
  5. Abstract. Mount Somma–Vesuvius is a stratovolcano that represents a geological hazard to the population of the city of Naples and surrounding towns in southern Italy. Historically, volcanic eruptions at Mt. Somma–Vesuvius (SV) include high-magnitude Plinian eruptions, such as the infamous 79 CE eruption that occurred after 295 years of quiescence and killed thousands of people in Pompeii and surrounding towns and villages. The last eruption at SV was in 1944 and showed a Volcanic Explosivity Index (VEI) of 3 (0.01 km3 of volcanic material erupted). Following the 1944 eruption, SV has been dormant for the past nearly 79 years, with only minor fumarolic and seismic activity. During its long history, centuries of dormancy at SV have ended with Plinian eruptions (VEI 6) that signal the beginning of a new cycle of eruptive activity. Thus, the current dormancy stage demands a need to better understand the mechanism involved in high-magnitude eruptions in order to better predict future eruption magnitude and style. Despite centuries of research on the SV volcanic system, many questions remain, including the evolution of magmatic volatiles from deep primitive magmas to shallower more evolved magmas. Developing a better understanding of the physical and chemical processes associated with volatile evolution at SV can provide insights into magma dynamics and the mechanisms that trigger highly explosive eruptions at SV. In this study, we present new data for the pre-eruptive volatile contents of magmas associated with four Plinian and two inter-Plinian eruptions at SV based on analyses of reheated melt inclusions (MIs) hosted in olivine. We correct the volatile contents of bubble-bearing MIs by taking into account the volatile contents of bubbles in the MIs. We recognize two groups of MIs: one group hosted in high-Fo olivine (Fo85–90) and relatively rich in volatiles and the other group hosted in low-Fo olivine (Fo70–69) and relatively depleted in volatiles. The correlation between volatile contents and compositions of host olivines suggests that magma fractionation took place under volatile-saturated conditions and that more differentiated magmas reside at shallower levels relative to less evolved/quasi-primitive magmas. Using the CO2 contents of corrected MIs hosted in Fo90 olivine from SV, we estimate that 347 to 686 t d−1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries (38–75 Mt in total) of volcanic activity. Although this study is limited to only few SV magmas, we suggest that further study applying similar methods could shed light on the apparent lack of correlation between the volatile contents of MIs and the style and age of eruptions. Further, such studies could provide additional constraints on the origin of CO2 and the interaction between the carbonate platform and ascending magmas below SV. 
    more » « less