skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fallback Supernova Assembly of Heavy Binary Neutron Stars and Light Black Hole–Neutron Star Pairs and the Common Stellar Ancestry of GW190425 and GW200115
Award ID(s):
1911206 1852393
PAR ID:
10299602
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
920
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We analyze effects of neutron-antineutron transitions in neutron stars, specifically on (i) cooling, (ii) rotation rate, and (iii) for binary pulsars, the increase in the orbital period. We show that these effects are negligibly small. 
    more » « less
  2. Abstract Nuclear reactions heat and cool the crust of accreting neutron stars and need to be understood to interpret observations of X-ray bursts and long-term cooling in transiently accreting systems. It was recently suggested that previously ignored neutron transfer reactions may play a significant role in the nuclear processes. We present results from full nuclear network calculations that now include these reactions and determine their impact on crust composition, crust impurity, heating, and cooling. We find that a large number of neutron transfer reactions indeed occur and impact crust models. In particular, we identify a new type of reaction cycle that brings a pair of nuclei across the nuclear chart into equilibrium via alternating neutron capture and neutron release, interspersed with a neutron transfer. While neutron transfer reactions lead to changes in crust model predictions and need to be considered in future studies, previous conclusions concerning heating, cooling, and compositional evolution are remarkably robust. 
    more » « less