skip to main content

Title: The theory of cosmic ray scattering on pre-existing MHD modes meets data
ABSTRACT We present a comprehensive study about the phenomenological implications of the theory describing Galactic cosmic ray scattering on to magnetosonic and Alfvénic fluctuations in the GeV−PeV domain. We compute a set of diffusion coefficients from first principles, for different values of the Alfvénic Mach number and other relevant parameters associated with both the Galactic halo and the extended disc, taking into account the different damping mechanisms of turbulent fluctuations acting in these environments. We confirm that the scattering rate associated with Alfvénic turbulence is highly suppressed if the anisotropy of the cascade is taken into account. On the other hand, we highlight that magnetosonic modes play a dominant role in Galactic confinement of cosmic rays up to PeV energies. We implement the diffusion coefficients in the numerical framework of the dragon code, and simulate the equilibrium spectrum of different primary and secondary cosmic ray species. We show that, for reasonable choices of the parameters under consideration, all primary and secondary fluxes at high energy (above a rigidity of $\simeq 200 \, \mathrm{GV}$) are correctly reproduced within our framework, in both normalization and slope.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
5821 to 5838
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Understanding the transport of energetic cosmic rays belongs to the most challenging topics in astrophysics. Diffusion due to scattering by electromagnetic fluctuations is a key process in cosmic ray transport. The transition from a ballistic to a diffusive-propagation regime is presented in direct numerical calculations of diffusion coefficients for homogeneous magnetic field lines subject to turbulent perturbations. Simulation results are compared with theoretical derivations of the parallel diffusion coefficient’s dependences on the energy and the fluctuation amplitudes in the limit of weak turbulence. The present study shows that the widely used extrapolation of the energy scaling for the parallel diffusion coefficient to high turbulence levels predicted by quasi-linear theory does not provide a universally accurate description in the resonant-scattering regime. It is highlighted here that the numerically calculated diffusion coefficients can be polluted for low energies due to missing resonant interaction possibilities of the particles with the turbulence. Five reduced-rigidity regimes are established, which are separated by analytical boundaries derived in this work. Consequently, a proper description of cosmic ray propagation can only be achieved by using a turbulence-level-dependent diffusion coefficient and can contribute to solving the Galactic cosmic ray gradient problem. 
    more » « less
  2. Abstract Cosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field composed of both a turbulent and a mean component. This process, which is two-fold turbulent mixing in that the particle motion is stochastic with respect to the field lines, needs to be understood in order to properly model cosmic-ray signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles. By taking the wave spectrum boundaries into account, we quantify cosmic-ray diffusion parallel and perpendicular to the guide field direction at turbulence levels above 5% of the total magnetic field. We apply our results of the parallel and perpendicular diffusion coefficient to the Milky Way. We show that simple purely diffusive transport is in conflict with observations of the inner Galaxy, but that just by taking a Galactic wind into account, data can be matched in the central 5 kpc zone. Further comparison shows that the outer Galaxy at $$>5$$ > 5  kpc, on the other hand, should be dominated by perpendicular diffusion, likely changing to parallel diffusion at the outermost radii of the Milky Way. 
    more » « less
  3. null (Ed.)
    ABSTRACT Recently, Squire & Hopkins showed that charged dust grains moving through magnetized gas under the influence of a uniform external force (such as radiation pressure or gravity) are subject to a spectrum of instabilities. Qualitatively distinct instability families are associated with different Alfvén or magnetosonic waves and drift or gyro motion. We present a suite of simulations exploring these instabilities, for grains in a homogeneous medium subject to an external acceleration. We vary parameters such as the ratio of Lorentz-to-drag forces on dust, plasma β, size scale, and acceleration. All regimes studied drive turbulent motions and dust-to-gas fluctuations in the saturated state, rapidly amplify magnetic fields into equipartition with velocity fluctuations, and produce instabilities that persist indefinitely (despite random grain motions). Different parameters produce diverse morphologies and qualitatively different features in dust, but the saturated gas state can be broadly characterized as anisotropic magnetosonic or Alfvénic turbulence. Quasi-linear theory can qualitatively predict the gas turbulent properties. Turbulence grows from small to large scales, and larger scale modes usually drive more vigorous gas turbulence, but dust velocity and density fluctuations are more complicated. In many regimes, dust forms structures (clumps, filaments, sheets) that reach extreme overdensities (up to ≫109 times mean), and exhibit substantial substructure even in nearly incompressible gas. These can be even more prominent at lower dust-to-gas ratios. In other regimes, dust self-excites scattering via magnetic fluctuations that isotropize and amplify dust velocities, producing fast, diffusive dust motions. 
    more » « less

    Models for cosmic ray (CR) dynamics fundamentally depend on the rate of CR scattering from magnetic fluctuations. In the ISM, for CRs with energies ∼MeV-TeV, these fluctuations are usually attributed either to ‘extrinsic turbulence’ (ET) – a cascade from larger scales – or ‘self-confinement’ (SC) – self-generated fluctuations from CR streaming. Using simple analytic arguments and detailed ‘live’ numerical CR transport calculations in galaxy simulations, we show that both of these, in standard form, cannot explain even basic qualitative features of observed CR spectra. For ET, any spectrum that obeys critical balance or features realistic anisotropy, or any spectrum that accounts for finite damping below the dissipation scale, predicts qualitatively incorrect spectral shapes and scalings of B/C and other species. Even if somehow one ignored both anisotropy and damping, observationally required scattering rates disagree with ET predictions by orders of magnitude. For SC, the dependence of driving on CR energy density means that it is nearly impossible to recover observed CR spectral shapes and scalings, and again there is an orders-of-magnitude normalization problem. But more severely, SC solutions with super-Alfvénic streaming are unstable. In live simulations, they revert to either arbitrarily rapid CR escape with zero secondary production, or to bottleneck solutions with far-too-strong CR confinement and secondary production. Resolving these fundamental issues without discarding basic plasma processes requires invoking different drivers for scattering fluctuations. These must act on a broad range of scales with a power spectrum obeying several specific (but plausible) constraints.

    more » « less
  5. null (Ed.)
    The IceCube Neutrino Observatory is a multi-component detector at the South Pole which detects high-energy particles emerging from astrophysical events. These particles provide us with insights into the fundamental properties and behaviour of their sources. Besides its principal usage and merits in neutrino astronomy, using IceCube in conjunction with its surface array, IceTop, also makes it a unique three-dimensional cosmic-ray detector. This distinctive feature helps facilitate detailed cosmic-ray analysis in the transition region from galactic to extragalactic sources. We will present the progress made on multiple fronts to establish a framework for mass-estimation of primary cosmic rays. The first technique relies on a likelihood-based analysis of the surface signal distribution and improves upon the standard reconstruction technique. The second uses advanced methods in graph neural networks to use the full in-ice shower footprint, in addition to global shower-footprint features from IceTop. A comparison between the two methods for composition analysis as well as a possible extension of the analysis techniques for sub-PeV cosmic-ray air-showers will also be discussed. 
    more » « less