skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigation of Piezoelectricity and Resistivity of Surface Modified Barium Titanate Nanocomposites
Polymer-ceramic nanocomposite piezoelectric and dielectric films are of interest because of their possible application to advanced embedded energy storage devices for printed wired electrical boards. The incompatibility of the two constituent materials; hydrophilic ceramic filler, and hydrophobic epoxy limit the filler concentration, and thus, their piezoelectric properties. This work aims to understand the role of surfactant concentration in establishing meaningful interfacial layers between the epoxy and ceramic filler particles by observing particle surface morphology, piezoelectric strain coefficients, and resistivity spectra. A comprehensive study of nanocomposites, comprising non-treated and surface treated barium titanate (BTO), embedded within an epoxy matrix, was performed. The surface treatments were performed with two types of coupling agents: Ethanol and 3-glycidyloxypropyltrimethoxysilan. The observations of particle agglomeration, piezoelectric strain coefficients, and resistivity were compared, where the most ideal properties were found for concentrations of 0.02 and 0.025. This work demonstrates that the interfacial core-shell processing layer concentration influences the macroscopic properties of nanocomposites, and the opportunities for tuning interfacial layers for desirable characteristics of specific applications.  more » « less
Award ID(s):
1659818
PAR ID:
10301011
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Polymers
Volume:
11
Issue:
12
ISSN:
2073-4360
Page Range / eLocation ID:
2123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High permittivity polymer-ceramic nanocomposite dielectric films take advantage of the ease of flexibility in processing of polymers and the functionality of electroactive ceramic fillers. Hence, films like these may be applied to embedded energy storage devices for printed circuit electrical boards. However, the incompatibility of the hydrophilic ceramic filler and hydrophobic epoxy limit the filler concentration and therefore, dielectric permittivity of these materials. Traditionally, surfactants and core-shell processing of ceramic fillers are used to achieve electrostatic and steric stabilization for adequate ceramic particle distribution but, questions regarding these processes still remain. The purpose of this work is to understand the role of surfactant concentration ceramic particle surface morphology, and composite dielectric permittivity and conductivity. A comprehensive study of barium titanate-based epoxy nanocomposites was performed. Ethanol and 3-glycidyloxypropyltrimethoxysilan surface treatments were performed, where the best reduction in particle agglomeration, highest value of permittivity and the lowest value of loss were observed. The results demonstrate that optimization of coupling agent may lead to superior permittivity values and diminished losses that are ~2–3 times that of composites with non-optimized and traditional surfactant treatments. 
    more » « less
  2. Abstract Both experimental results and theoretical models suggest the decisive role of the filler–matrix interfaces on the dielectric, piezoelectric, pyroelectric, and electrocaloric properties of ferroelectric polymer nanocomposites. However, there remains a lack of direct structural evidence to support the so‐called interfacial effect in dielectric nanocomposites. Here, a chemical mapping of the interfacial coupling between the nanofiller and the polymer matrix in ferroelectric polymer nanocomposites by combining atomic force microscopy–infrared spectroscopy (AFM–IR) with first‐principles calculations and phase‐field simulations is provided. The addition of ceramic fillers into a ferroelectric polymer leads to augmentation of the local conformational disorder in the vicinity of the interface, resulting in the local stabilization of the all‐transconformation (i.e., the polar β phase). The formation of highly polar and inhomogeneous interfacial regions, which is further enhanced with a decrease of the filler size, has been identified experimentally and verified by phase‐field simulations and density functional theory (DFT) calculations. This work offers unprecedented structural insights into the configurational disorder‐induced interfacial effect and will enable rational design and molecular engineering of the filler–matrix interfaces of electroactive polymer nanocomposites to boost their collective properties. 
    more » « less
  3. The bonding of ceramic to metal has been challenging due to the dissimilar nature of the materials, particularly different surface properties and the coefficients of thermal expansion (CTE). To address the issues, gas phase-processed thin metal films were inserted at the metal/ceramic interface to modify the ceramic surface and, therefore, promote heterogeneous bonding. In addition, an alloy bonder that is mechanically and chemically activated at as low as 220 °C with reactive metal elements was utilized to bond the metal and ceramic. Stainless steel (SS)/Zerodur is selected as the metal/ceramic bonding system where Zerodur is chosen due to the known low CTE. The low-temperature process and the low CTE of Zerodur are critical to minimizing the undesirable stress evolution at the bonded interface. Sputtered Ti, Sn, and Cu (300 nm) were deposited on the Zerodur surface, and then dually activated molten alloy bonders were spread on both surfaces of the coated Zerodur and SS at 220 °C in air. The shear stress of the bonding was tested with a custom-designed fixture in a universal testing machine and was recorded through a strain indicator. The mechanical strength and the bonded surface property were compared as a function of interfacial metal thin film and analyzed through thermodynamic interfacial stability/instability calculations. A maximum shear strength of bonding of 4.36 MPa was obtained with Cu interfacial layers, while that of Sn was 3.53 MPa and that of Ti was 3.42 MPa. These bonding strengths are significantly higher than those (∼0.04 MPa) of contacts without interfacial reactive thin metals. 
    more » « less
  4. Carbon nanotube (CNT)/epoxy nanocomposites have a great potential of possessing many advanced properties. However, the homogenization of CNT dispersion is still a great challenge in the research field of nanocomposites. This study applied a novel dispersion agent, carboxymethyl cellulose (CMC), to functionalize CNTs and improve CNT dispersion in epoxy. The effectiveness of the CMC functionalization was compared with mechanical mixing and a commonly used surfactant, sodium dodecylbenzene sulfonate (NaDDBS), regarding dispersion, mechanical and corrosion properties of CNT/epoxy nanocomposites with three different CNT concentrations (0.1%, 0.3% and 0.5%). The experimental results of Raman spectroscopy, particle size analysis and transmission electron microscopy showed that CMC functionalized CNTs reduced CNT cluster sizes more efficiently than NaDDBS functionalized and mechanically mixed CNTs, indicating a better CNT dispersion. The peak particle size of CMC functionalized CNTs reduced as much as 54% (0.1% CNT concentration) and 16% (0.3% CNT concentration), compared to mechanical mixed and NaDDBS functionalized CNTs. Because of the better dispersion, it was found by compressive tests that CNT/epoxy nanocomposites with CMC functionalization resulted in 189% and 66% higher compressive strength, 224% and 50% higher modulus of elasticity than those with mechanical mixing and NaDDBS functionalization respectively (0.1% CNT cencentration). In addition, electrochemical corrosion tests also showed that CNT/epoxy nanocomposites with CMC functionalization achieved lowest corrosion rate (0.214 mpy), the highest corrosion resistance (201.031 Ω·cm2), and the lowest porosity density (0.011%). 
    more » « less
  5. It is well-known that particle–polymer interactions strongly control the adsorption and conformations of adsorbed chains. Interfacial layers around nanoparticles consisting of adsorbed and free matrix chains have been extensively studied to reveal their rheological contribution to the behavior of nanocomposites. This work focuses on how chemical heterogeneity of the interfacial layers around the particles governs the microscopic mechanical properties of polymer nanocomposites. Low glass-transition temperature composites consisting of poly(vinyl acetate) coated silica nanoparticles in poly(ethylene oxide) and poly(methyl acrylate) matrices, and of poly(methyl methacrylate) silica nanoparticles in a poly(methyl acrylate) matrix are examined using rheology and X-ray photon correlation spectroscopy. We demonstrate that miscibility between the adsorbed and matrix chains in the interfacial layers led to the observed unusual reinforcement. We suggest that packing of chains in the interfacial regions may also contribute to the reinforcement in the polymer nanocomposites. These features may be used in designing mechanically adaptive composites operating at varying temperature. 
    more » « less