skip to main content


Title: Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation
Chiral amines can be made by insertion of a carbene into an N–H bond using two-catalyst systems that combine a transition metal-based carbene-transfer catalyst and a chiral proton-transfer catalyst to enforce stereocontrol. Haem proteins can effect carbene N–H insertion, but asymmetric protonation in an active site replete with proton sources is challenging. Here we describe engineered cytochrome P450 enzymes that catalyse carbene N–H insertion to prepare biologically relevant α-amino lactones with high activity and enantioselectivity (up to 32,100 total turnovers, >99% yield and 98% e.e.). These enzymes serve as dual-function catalysts, inducing carbene transfer and promoting the subsequent proton transfer with excellent stereoselectivity in a single active site. Computational studies uncover the detailed mechanism of this new-to-nature enzymatic reaction and explain how active-site residues accelerate this transformation and provide stereocontrol.  more » « less
Award ID(s):
2016137
NSF-PAR ID:
10301262
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Chemistry
ISSN:
1755-4330
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report a computationally driven approach to access enantiodivergent enzymatic carbene N−H insertions catalyzed by P411 enzymes. Computational modeling was employed to rationally guide engineering efforts to control the accessible conformations of a key lactone‐carbene (LAC) intermediate in the enzyme active site by installing a new H‐bond anchoring point. This H‐bonding interaction controls the relative orientation of the reactive carbene intermediate, orienting it for an enantioselectiveN‐nucleophilic attack by the amine substrate. By combining MD simulations and site‐saturation mutagenesis and screening targeted to only two key residues, we were able to reverse the stereoselectivity of previously engineeredS‐selective P411 enzymes. The resulting variant,L5_FL‐B3, accepts a broad scope of amine substrates for N−H insertion with excellent yields (up to >99 %), high efficiency (up to 12 300 TTN), and good enantiocontrol (up to 7 : 93er).

     
    more » « less
  2. Abstract

    We report a computationally driven approach to access enantiodivergent enzymatic carbene N−H insertions catalyzed by P411 enzymes. Computational modeling was employed to rationally guide engineering efforts to control the accessible conformations of a key lactone‐carbene (LAC) intermediate in the enzyme active site by installing a new H‐bond anchoring point. This H‐bonding interaction controls the relative orientation of the reactive carbene intermediate, orienting it for an enantioselectiveN‐nucleophilic attack by the amine substrate. By combining MD simulations and site‐saturation mutagenesis and screening targeted to only two key residues, we were able to reverse the stereoselectivity of previously engineeredS‐selective P411 enzymes. The resulting variant,L5_FL‐B3, accepts a broad scope of amine substrates for N−H insertion with excellent yields (up to >99 %), high efficiency (up to 12 300 TTN), and good enantiocontrol (up to 7 : 93er).

     
    more » « less
  3. Intramolecular C–H insertions with donor/donor dirhodium carbenes provide a concise and highly stereoselective method to set two contiguous stereocenters in a single step. Herein, we report the insertion of donor/donor carbenes into stereogenic carbon centers allowing access to trisubstituted benzodihydrofurans in a single step. This study illuminates, for the first time, the stereochemical impact on the carbene center and delineates the structural factors that enable control over both stereogenic centers. Sterically bulky, highly activated C–H insertion centers exhibit high substrate control yielding a single diastereomer and a single enantiomer of product regardless of the catalyst used. Less bulky, less activated C–H insertion centers exhibit catalyst control over the diastereomeric ratio (dr), where a single enantiomer of each diastereomer is observed with high selectivity. A combination of experimental studies and DFT calculations was used to elucidate the origin of these results. First, hydride transfer from the stereogenic insertion site proceeds with high stereoselectivity to the carbene center, thus determining the absolute configuration of the product. Second, the short lived zwitterionic intermediate can diaster-eoselectively ring-close by a hitherto unreported S E 2 mechanism that is either controlled by the substrate or the catalyst. These results demonstrate that donor/donor carbenes undergo uniquely stereoselective reactions that originate from a stepwise reaction mechanism, in contrast to the analogous concerted reactions of carbenes with one or more electron-withdrawing groups attached. 
    more » « less
  4. null (Ed.)
    Hydrogen bonding plays a critical role in maintaining order and structure in complex biological and synthetic systems. N -heterocyclic carbenes (NHCs) represent one of the most versatile tools in the synthetic chemistry toolbox, yet their potential as neutral carbon hydrogen bond acceptors remains underexplored. This report investigates this capability in a strategic manner, wherein carbene-based hydrogen bonding can be assessed by use of ditopic NH -containing molecules. N–H bonds are unique as there are three established reaction modes with carbenes: non-traditional hydrogen bonding adducts (X–H⋯:C), salts arising from proton transfer ([H–C] + [X] − ), or amines from insertion of the carbene into the N–H bond. Yet, there are no established rules to predict product distributions or the strength of these associations. Here we seek to correlate the hydrogen bond strength of symmetric and asymmetric ditopic secondary amines with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene ( IPr , a representative NHC). In symmetric and asymmetric ditopic amine adducts both the solid-state (hydrogen bond lengths, NHC interior angles) and solution-state ( 1 H Δ δ of NH signals, 13 C signals of carbenic carbon) can be related to the p K a of the parent amine. 
    more » « less
  5. Engineered myoglobins have recently gained attention for their ability to catalyze a variety of abiological carbene transfer reactions including the functionalization of amines via carbene insertion into N–H bonds. However, the scope of myoglobin and other hemoprotein-based biocatalysts in the context of this transformation has been largely limited to aniline derivatives as the amine substrates and ethyl diazoacetate as the carbene donor reagent. In this report, we describe the development of an engineered myoglobin-based catalyst that is useful for promoting carbene N–H insertion reactions across a broad range of substituted benzylamines and α-diazo acetates with high efficiency (82–99% conversion), elevated catalytic turnovers (up to 7,000), and excellent chemoselectivity for the desired single insertion product (up to 99%). The scope of this transformation could be extended to cyclic aliphatic amines. These studies expand the biocatalytic toolbox available for the selective formation of C–N bonds, which are ubiquitous in many natural and synthetic bioactive compounds. 
    more » « less