skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-Ripple High-Voltage DC Generation Using a Serially Segmented Multiphase Voltage Multiplier
This paper presents a voltage multiplier topology that is suitable for a low-ripple high-voltage dc generation. The topology has a number of voltage multipliers connected in series and driven at different phases. Compared to a single-phase multiplier, an n-phase voltage multiplier has an output ripple that is smaller by n times. Since the ripple frequency is simultaneously increased by n times, a simple RC lowpass filter further reduces the ripple amplitude by n times, resulting in ripple reduction of n^2 times. We demonstrate the ripple reduction of the proposed topology using a 6 V-to-800 V power supply with a 16-stage four-phase bipolar voltage multiplier. The output ripple frequency is eight times the converter's switching frequency and the ripple amplitude is significantly smaller than the conventional single-phase voltage multiplier.  more » « less
Award ID(s):
1808489
PAR ID:
10301394
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2020 IEEE Energy Conversion Congress and Exposition (ECCE)
Page Range / eLocation ID:
962 to 968
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a voltage multiplier topology that is a hybrid between a Cockcroft-Walton multiplier and a Dickson charge pump. The Cockcroft-Walton structure exhibits significant output voltage drop under load as the number of multiplier stage increases. This is because all coupling capacitors are connected in series. Dickson charge pump mitigates this issue by connecting all capacitors in parallel. But this solution comes at the expense of large capacitor voltage stress at the last multiplier stage. The proposed hybrid structure arranges some capacitors in parallel and others in series, thereby achieving low output voltage drop and low capacitor voltage stress at the same time. We develop a model that predicts hybrid multiplier's performance and validate it experimentally. We also demonstrate a 60 V-to-2.25 kV dc-dc converter based on a 16-stage hybrid voltage multiplier which achieves a voltage gain of 12.8 while keeping the highest capacitor voltage stress to 660 V. 
    more » « less
  2. We develop a small and lightweight high-voltage high-gain power converter for applications where weight and size are premium. By driving a Dickson and Cockcroft-Walton voltage multiplier with a megahertz-frequency class-E inverter, we implement two converters, one that achieves 40 V-to-2 kV conversion with 16 cm3 box volume and the other that achieves 3.7 V-to-2.9 kV conversion with 0.2 cm3 box volume and 0.49 g weight. Presented converters achieve comparable or better power density and specific power to those of commercial high-voltage power supplies. 
    more » « less
  3. An ultra low current and low voltage rail-to-rail input-output class AB amplifier is presented that is based on standard 0.18 micron digital CMOS. Operating under the subthreshold region, the amplifier is capable of running at high speeds, with a supply voltage (V DD ) as low as ∼ 0.6V. The main contributions of this work are: First, a primarily current-mode rail-to-rail output stage is presented that employs Minimum Current Selectors (MCS) which monitor the sink-source currents of the output buffer transistors. Concurrently, Current Feedback Amplifiers (CFA) composed of Inverting Current Mirrors (ICM) regulate the minimum stand-by currents for either the non-sinking or non-sourcing output transistors, while allowing maximum currents to run through the sinking or sourcing transistors. As such, the output stage, in its basic configuration, can deliver a wide dynamic range at high speeds with V DD as low as ∼ V GS +2V DS . Second, a Floating Current Source (FCS) is utilized in the main amplifier that can also operate with V DD as low as ∼ V GS +2V DS . Montecarlo (MC) and worst case (WC) simulation show the following specifications are achievable: V DD minimum ∼ 0.6v; I DD ∼ 330nA; Input range rail-to-rail; offset voltage ∼ 6mV; Output range ∼ 25mV from the rails; open loop gain (Av) ∼ 78dB with unity gain frequency (fu) ∼ 1MHz and phase margin (PM) ∼ 40 degrees; power supply rejection ratio (PSRR) ∼ −83dB; common mode rejection ration (CMRR) ∼ −98dB; Slew rate (SR) ∼ 2V/us; Settling time (ts) ∼ 3uS to ∼ 2mV; rail-to-rail output voltage swing with R L ∼ 5K ohms, and size ∼ 120um/side. 
    more » « less
  4. Summary Inductive power transfer has become an emerging technology for its significant benefits in many applications, including mobile phones, laptops, electric vehicles, implanted bio‐sensors, and internet of things (IoT) devices. In modern applications, a direct current–direct current (DC–DC) converter is one of the essential components to regulate the output supply voltage for achieving the desired characteristics, that is, steady voltage with lower peak ripples. This paper presents a switched‐capacitor (SC) DC–DC converter using complementary architecture to provide a regulated DC voltage with an increased dynamic response. The proposed topology enhances the converter efficiency by decreasing the equivalent output resistance to half by connecting two symmetric SC single ladder converters. The proposed converter is designed using the standard 130‐nm BiCMOS process. The results show that the proposed architecture produces 327‐mV DC output with a rise time of 60.1 ns and consumes 3.449‐nW power for 1.0‐V DC supply. The output settling time is 43.6% lower than the single‐stage SC DC–DC converter with an input frequency of 200 MHz. The comparison results show that the proposed converter has a higher power conversion efficiency of 93.87%and a lower power density of 0.57 mW/mm2compared to the existing works. 
    more » « less
  5. We present a wake-up receiver amenable to integration in a node of RF backscattering tag-to-tag network. A high input impedance of a passive envelope detector (ED) is accomplished by backward bias that improves the passive voltage gain. Two differential outputs are ac-coupled to a baseband amplifier that operates in the subthreshold region. We develop a closed-form model of the passive ED in order to predict the output and ripple voltages and therefor the receiver’s sensitivity. The wakeup receiver is implemented in 180 nm CMOS technology and consumes 2 nW with 0.8 V supply voltage while demodulating 915 MHz amplitude-shift keying (ASK) signal with data rate of 10 kbps. The receiver demonstrates -67.98 dBm sensitivity in resolving ASK modulated signal. 
    more » « less