Statistical confidence in estimates of timber volume, carbon storage, and other forest attributes depends, in part, on the uncertainty in field measurements. Surprisingly, measurement uncertainty is rarely reported, even though national forest inventories routinely repeat field measurements for quality assurance. We compared measurements made by field crews and quality assurance crews in the Forest Inventory and Analysis program of the U.S. Forest Service, using data from 2790 plots and 51 740 trees and saplings across the 24 states of the Northern Region. We characterized uncertainty in 12 national core tree-level variables; seven tree crown variables used in forest health monitoring; three variables describing seedlings; and 11 variables describing the site, such as elevation, slope, and distance from a road. Discrepancies in measurement were generally small but were higher for some variables requiring judgment, such as tree class, decay class, and cause of mortality. When scaled up to states, forest types, or the region, uncertainties in basal area, timber volume, and aboveground biomass were negligible. Understanding all sources of uncertainty is important to designing forest monitoring systems, managing the conduct of the inventory, and assessing the uncertainty of forest attributes required for making regional and national forest policy decisions.
more »
« less
An Accuracy Assessment of Field and Airborne Laser Scanning–Derived Individual Tree Inventories using Felled Tree Measurements and Log Scaling Data in a Mixed Conifer Forest
Abstract On-the-ground sample-based forest inventory methods have been the standard practice for more than a century, however, remote sensing technologies such as airborne laser scanning (ALS) are providing wall-to-wall inventories based on individual tree measurements. In this study, we assess the accuracy of individual tree height, diameter, and volume derived from field-cruising measurements and three ALS data-derived methods in a 1.1 ha stand using direct measurements acquired on felled trees and log-scale volume measurements. Results show that although height derived from indirect conventional field measurements and ALS were statistically equivalent to felled tree height measurements, ALS measured heights had lower root mean square error (RMSE) and bias. Individual tree diameters modeled using a height-to-diameter-at-breast-height model derived from local forest inventory data and the software ForestView had moderate RMSE (8.3–8.5 cm) and bias (-3.0 – -0.3 cm). The ALS-based methods underdetected trees but accounted for 78%–91% of the field reference harvested merchantable volume and 71%–99% of the merchantable volume scaled at the mill. The results also illustrate challenges of using mill-scaled volume estimates as validation data and highlight the need for more research in this area. Overall, the results provide key insights to forest managers on accuracies associated with conventional field-derived and ALS-derived individual tree inventories. Study Implications: Forest inventory data provide critical information for operational decisions and forest product supply chain planning. Traditionally, forest inventories have used field sampling of stand conditions, which is time-intensive and cost-prohibitive to conduct at large spatial scales. Remote sensing technologies such as airborne laser scanning (ALS) provide wall-to-wall inventories based on individual tree measurements. This study advances our understanding of the accuracy of conventional field-derived and ALS-derived individual tree inventories by evaluating these inventories with felled tree and log scaling data. The results provide key insights to forest managers on errors associated with conventional field and ALS-derived individual tree measurements.
more »
« less
- Award ID(s):
- 2316126
- PAR ID:
- 10517071
- Editor(s):
- Roberts, Scott
- Publisher / Repository:
- Society of American Foresters
- Date Published:
- Journal Name:
- Forest Science
- Volume:
- 70
- Issue:
- 3
- ISSN:
- 0015-749X
- Page Range / eLocation ID:
- 228 to 241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and—ultimately—the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.more » « less
-
Abstract Robust ecological forecasting of tree growth under future climate conditions is critical to anticipate future forest carbon storage and flux. Here, we apply three ingredients of ecological forecasting that are key to improving forecast skill: data fusion, confronting model predictions with new data, and partitioning forecast uncertainty. Specifically, we present the first fusion of tree‐ring and forest inventory data within a Bayesian state‐space model at a multi‐site, regional scale, focusing onPinus ponderosavar.brachypterain the southwestern US. Leveraging the complementarity of these two data sources, we parsed the ecological complexity of tree growth into the effects of climate, tree size, stand density, site quality, and their interactions, and quantified uncertainties associated with these effects. New measurements of trees, an ongoing process in forest inventories, were used to confront forecasts of tree diameter with observations, and evaluate alternative tree growth models. We forecasted tree diameter and increment in response to an ensemble of climate change projections, and separated forecast uncertainty into four different causes: initial conditions, parameters, climate drivers, and process error. We found a strong negative effect of fall–spring maximum temperature, and a positive effect of water‐year precipitation on tree growth. Furthermore, tree vulnerability to climate stress increases with greater competition, with tree size, and at poor sites. Under future climate scenarios, we forecast increment declines of 22%–117%, while the combined effect of climate and size‐related trends results in a 56%–91% decline. Partitioning of forecast uncertainty showed that diameter forecast uncertainty is primarily caused by parameter and initial conditions uncertainty, but increment forecast uncertainty is mostly caused by process error and climate driver uncertainty. This fusion of tree‐ring and forest inventory data lays the foundation for robust ecological forecasting of aboveground biomass and carbon accounting at tree, plot, and regional scales, including iterative improvement of model skill.more » « less
-
Weinstein, Ben (Ed.)# Individual Tree Predictions for 100 million trees in the National Ecological Observatory Network Preprint: https://www.biorxiv.org/content/10.1101/2023.10.25.563626v1 ## Manuscript Abstract The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales allows an unprecedented view of forest ecosystems, forest restoration and responses to disturbance. To create detailed maps of tree species, airborne remote sensing can cover areas containing millions of trees at high spatial resolution. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance. Computer vision using deep neural networks can convert raw sensor data into predictions of individual tree species using ground truthed data collected by field researchers. Using over 40,000 individual tree stems as training data, we create landscape-level species predictions for over 100 million individual trees for 24 sites in the National Ecological Observatory Network. Using hierarchical multi-temporal models fine-tuned for each geographic area, we produce open-source data available as 1km^2 shapefiles with individual tree species prediction, as well as crown location, crown area and height of 81 canopy tree species. Site-specific models had an average performance of 79% accuracy covering an average of six species per site, ranging from 3 to 15 species. All predictions were uploaded to Google Earth Engine to benefit the ecology community and overlay with other remote sensing assets. These data can be used to study forest macro-ecology, functional ecology, and responses to anthropogenic change. ## Data Summary Each NEON site is a single zip archive with tree predictions for all available data. For site abbreviations see: https://www.neonscience.org/field-sites/explore-field-sites. For each site, there is a .zip and .csv. The .zip is a set 1km .shp tiles. The .csv is all trees in a single file. ## Prediction metadata *Geometry* A four pointed bounding box location in utm coordinates. *indiv_id* A unique crown identifier that combines the year, site and geoindex of the NEON airborne tile (e.g. 732000_4707000) is the utm coordinate of the top left of the tile. *sci_name* The full latin name of predicted species aligned with NEON's taxonomic nomenclature. *ens_score* The confidence score of the species prediction. This score is the output of the multi-temporal model for the ensemble hierarchical model. *bleaf_taxa* Highest predicted category for the broadleaf submodel *bleaf_score* The confidence score for the broadleaf taxa submodel *oak_taxa* Highest predicted category for the oak model *dead_label* A two class alive/dead classification based on the RGB data. 0=Alive/1=Dead. *dead_score* The confidence score of the Alive/Dead prediction. *site_id* The four letter code for the NEON site. See https://www.neonscience.org/field-sites/explore-field-sites for site locations. *conif_taxa* Highest predicted category for the conifer model *conif_score* The confidence score for the conifer taxa submodel *dom_taxa* Highest predicted category for the dominant taxa mode submodel *dom_score* The confidence score for the dominant taxa submodel ## Training data The crops.zip contains pre-cropped files. 369 band hyperspectral files are numpy arrays. RGB crops are .tif files. Naming format is __, for example. "NEON.PLA.D07.GRSM.00583_2022_RGB.tif" is RGB crop of the predicted crown of NEON data from Great Smoky Mountain National Park (GRSM), flown in 2022.Along with the crops are .csv files for various train-test split experiments for the manuscript. ### Crop metadata There are 30,042 individuals in the annotations.csv file. We keep all data, but we recommend a filtering step of atleast 20 records per species to reduce chance of taxonomic or data cleaning errors. This leaves 132 species. *score* This was the DeepForest crown score for the crop. *taxonID*For letter species code, see NEON plant taxonomy for scientific name: https://data.neonscience.org/taxonomic-lists *individual*unique individual identifier for a given field record and crown crop *siteID*The four letter code for the NEON site. See https://www.neonscience.org/field-sites/explore-field-sites for site locations. *plotID* NEON plot ID within the site. For more information on NEON sampling see: https://www.neonscience.org/data-samples/data-collection/observational-sampling/site-level-sampling-design *CHM_height* The LiDAR derived height for the field sampling point. *image_path* Relative pathname for the hyperspectral array, can be read by numpy.load -> format of 369 bands * Height * Weight *tile_year* Flight year of the sensor data *RGB_image_path* Relative pathname for the RGB array, can be read by rasterio.open() # Code repository The predictions were made using the DeepTreeAttention repo: https://github.com/weecology/DeepTreeAttentionKey files include model definition for a [single year model](https://github.com/weecology/DeepTreeAttention/blob/main/src/models/Hang2020.py) and [Data preprocessing](https://github.com/weecology/DeepTreeAttention/blob/cae13f1e4271b5386e2379068f8239de3033ec40/src/utils.py#L59).more » « less
-
null (Ed.)Forests provide biodiversity, ecosystem, and economic services. Information on individual trees is important for understanding forest ecosystems but obtaining individual-level data at broad scales is challenging due to the costs and logistics of data collection. While advances in remote sensing techniques allow surveys of individual trees at unprecedented extents, there remain technical challenges in turning sensor data into tangible information. Using deep learning methods, we produced an open-source data set of individual-level crown estimates for 100 million trees at 37 sites across the United States surveyed by the National Ecological Observatory Network’s Airborne Observation Platform. Each canopy tree crown is represented by a rectangular bounding box and includes information on the height, crown area, and spatial location of the tree. These data have the potential to drive significant expansion of individual-level research on trees by facilitating both regional analyses and cross-region comparisons encompassing forest types from most of the United States.more » « less
An official website of the United States government

