Abstract Environmental seismic disturbances limit the sensitivity of LIGO gravitational wave detectors. Trains near the LIGO Livingston detector produce low frequency (0.5– ) ground noise that couples into the gravitational wave sensitive frequency band (10– ) through light reflected in mirrors and other surfaces. We investigate the effect of trains during the Advanced LIGO third observing run, and propose a method to search for narrow band seismic frequencies responsible for contributing to increases in scattered light. Through the use of the linear regression tool Lasso (least absolute shrinkage and selection operator) and glitch correlations, we identify the most common seismic frequencies that correlate with increases in detector noise as 0.6– , 1.7– , 1.8– , and 2.3– in the LIGO Livingston corner station.
more »
« less
Waveform uncertainty quantification and interpretation for gravitational-wave astronomy
Abstract We demonstrate how to quantify the frequency-domain amplitude and phase accuracy of waveform models, andδφ, in a form that could be marginalized over in gravitational-wave inference using techniques currently applied for quantifying calibration uncertainty. For concreteness, waveform uncertainties affecting neutron-star inspiral measurements are considered, and post-hoc error estimates from a variety of waveform models are made by comparing time-domain and frequency-domain analytic models with multiple-resolution numerical simulations. These waveform uncertainty estimates can be compared to GW170817 calibration envelopes or to Advanced LIGO and Virgo calibration goals. Signal-specific calibration and waveform uncertainties are compared to statistical fluctuations in gravitational-wave observatories, giving frequency-dependent modeling requirements for detectors such as Advanced LIGO Plus, Cosmic Explorer, or Einstein Telescope. Finally, the distribution of waveform error for the GW170817 posterior is computed from tidal models and compared to the constraints onδφor from GWTC-1 by Edelmanet al.In general,δφand can also be interpreted in terms of unmodeled astrophysical energy transfer within or from the source system.
more »
« less
- Award ID(s):
- 2110441
- PAR ID:
- 10415585
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 40
- Issue:
- 13
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- Article No. 135002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The sensitivity of urban canopy air temperature ( ) to anthropogenic heat flux ( ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of (where represents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median is around 0.01 over the CONUS. Besides the direct effect of on , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and is mostly controlled by the direct effect in summer. In winter, becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with . The spatial and temporal (both seasonal and diurnal) variability of as well as the nonlinear response of to are strongly related to the variability of , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models.more » « less
-
Abstract Objective.In vivoimaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.Approach. In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness ( ), substrate shear stiffness ( ), shear anisotropy ( ), and tensile anisotropy ( ) of the gastrocnemius muscle in response to both passive and active tension.Main results. In passive tension, we found a significant increase in and with increasing muscle length. While in active tension, we observed increasing and decreasing and during active dorsiflexion and plantarflexion—indicating less anisotropy—with greater effects when the muscles act as agonist.Significance. The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction.more » « less
-
Abstract We investigate the effectiveness of the statistical radio frequency interference (RFI) mitigation technique spectral kurtosis ( ) in the face of simulated realistic RFI signals. estimates the kurtosis of a collection ofMpower values in a single channel and provides a detection metric that is able to discern between human-made RFI and incoherent astronomical signals of interest. We test the ability of to flag signals with various representative modulation types, data rates, duty cycles, and carrier frequencies. We flag with various accumulation lengthsMand implement multiscale , which combines information from adjacent time-frequency bins to mitigate weaknesses in single-scale . We find that signals with significant sidelobe emission from high data rates are harder to flag, as well as signals with a 50% effective duty cycle and weak signal-to-noise ratios. Multiscale with at least one extra channel can detect both the center channel and sideband interference, flagging greater than 90% as long as the bin channel width is wider in frequency than the RFI.more » « less
-
Abstract We present a theory based on the conventional two-term (i.e. Lorentzian) approximation to the exact solution of the Boltzmann equation in non-magnetized weakly ionized plasma to efficiently obtain the electron rate and transport coefficients in a magnetized plasma for an arbitrary magnitude and direction of applied electric field and magnetic field . The proposed transcendental method does not require the two-term solution of the Boltzmann equation in magnetized plasma, based on which the transport parameters vary as a function of the reduced electric field , reduced electron cyclotron frequency , and angle between and vectors, whereNis the density of neutrals. Comparisons between the coefficients derived from BOLSIG+’s solution (obtained via the two-term expansion when ) and coefficients of the presented method are illustrated for air, a mixture of molecular hydrogen (H2) and helium (He) representing the giant gas planets of the Solar System, and pure carbon dioxide (CO2). The new approach may be used in the modeling of magnetized plasma encountered in the context of transient luminous events, e.g. sprite streamers in the atmosphere of Earth and Jupiter, in modeling the propagation of lightning’s electromagnetic pulses in Earth’s ionosphere, and in various laboratory and industrial applications of nonthermal plasmas.more » « less